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Lack of data processing for input in-the-wild

The complexity of processing of input formats
yields longer cycles between finding failure cases
and fine-tuning new models.



Lack of interactive data and model tuning

"models can be affected by over-fitting, so need to
test with a large variety of image augmentations” (12)



Loss of application context

“Metric doesn’t help <in my depth models>, it’s
always good for all the models, so it's no use. They
need human eyes to evaluate.” (16)



Lack of direct comparison and sharing

"l want to isolate bad examples of a specific error
pattern to discuss with stakeholders." (I1)



Slow iterations

"A lot of time goes into visualization of challenge
sets, benchmarking, and metrics. Usually takes
weeks." (12)



Insufficient controllability

"We need to integrate the model with other modules
— (to evaluate whether) can we improve the higher-
level model?" (17)



Design goals

Visual programming for rapid prototyping
Run real-time ML pipelines

Input in-the-wild

. Interactive data augmentation
Side-by-side comparison

Off-the-shelf & customize models
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0 rapsal — Visual Blocks for ML

A Visual Programming Platform for Rapid and Iterative
Development of End-to-end ML-based Applications
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Rapsai

Nodes Library

D FULL LIST OF NODES IN RAPSAI

We list all the supported nodes in Rapsai before the case study. Note
that Rapsai is extendable for expert users by adding new nodes in
JavaScript.

D.1 Input nodes

(1) image: capture a photo from webcam, upload from hard
drive, or fetch from a list of remote URLs.

(2) video: record a video with external webcam or upload a
video from disk or YouTube.

(3) audio: record sounds from microphone, or upload audio files
from disk or Internet

(4) live camera: use live camera stream, similar for the live
audio node.

(5) remote stream: stream input from another device (e.g., mo-
bile phone) via WebRTC, by opening a URL of the page with
a lobby node.

(6) lobby: create a WebRTC server to accept video streaming
from other devices. Remote stream nodes that connect to
the lobby node with the same name are sharing output via
WebRTC streaming.

D.2 Effect nodes

(7) image processor: crop and translate a region of interest
in the input to verify an image model’s invariance to trans-
lation; rotate, shear, resize an image to examine potential
biasing issues in the training sets; apply blur and noise to
test a model’s robustness.

(8) image mixer: mix images with GPU-based blending modes’

(9) audio processor: trim the audio, change volume, and add
background noise from a collection of 17 presets.

(10) fragment shader: program and apply a screen-space graph-
ical shader effect.

(11) shader library: offers a pre-defined list of shader code to
avoid coding into the “fragment shader”.

0

D.3 Model nodes

(12) custom model runner: enter the URL of an TensorFlow.js
model or upload a TensorFlow model into the pipeline.

(13) body segmentation: run a deployed MediaPipe body seg-
mentation model.

(14) audio denoising: run either of two deployed audio denois-
ing models.

(15) MobileNet: run a deployed MobileNet model for image clas-
sification.

D.4 Output nodes

(16) image viewer node displays an image.

(17) audio player: play a single audio output.

(18) image comparison: qualitatively compare output from mul-
tiple models with zoom-in tools.

(19) audio comparison: qualitatively compare output from mul-
tiple models with automatic track switching.

(20) JSON viewer: read the raw output from a model for debug-
ging.

(21) bar viewer: view the classification results from a model such
as MobileNet.

(22) 3D model viewer: view 3D models from an URL or tensor.

(23) tensor to image: view a tensor as images.

(24) tensor to depthmap: view a tensor as depthmaps with dif-
ferent transfer functions.

(25) output stream: see remote video streams from the lobby
node input.

D.5 Tensor nodes

(26) preprocess image: converts an input image to a 4D tensor
as an input that is required by most image models.

(27) tensor picker: select a tensor from an array of output ten-
sors.

(28) tensor postprocess: convert a tensor to an image and apply
normalization calculators.

(29) binary op: apply “and”, "or”, "xor”, and "not” operations
between two input tensors.

(30) clip by value: clamp the values of an input tensor.

(31) crop and resize: crop and resize a two-dimensional tensor.

(32) preprocess tensor: normalize a tensor, expand dimensions,
and optionally convert to grayscale image for many genera-
tive models.

(33) postprocess tensor: normalize and resize a tensor for image
output.

(34) tensor picker: select a certain tensor from an array of model
output. Note that most models only have one output so it is
optional.

(35) remap value range: select an input and an output ranges
to remap tensor values.

D.6 Miscellaneous nodes
(36) webpage: append a Google Form or a custom webpage for
filling in surveys.
(37) image size: obtain image size for outputting to some models.
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Rapsai
Interactive Data
Augmentation
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(b) side-by-side comparison of segmentation results with different augmentation techniques
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Case Study

Five Stages

Background interview (6.1 + 0.8 min)

Video tutorial (4 min),
Visual analytics procedure using Rapsai (39.4 + 4.6 min)
Discussion of Rapsai and perception prototyping in future (10.2 = 2.0 min)

Post-hoc exit survey to use Rapsai and compare with Colab




Findings 1

Rapsai vs Colab

Less Control but More Transparent and Collaborative

i % i
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| spent about half a minute to create an

image classification pipeline, and | spent 2-3
minutes to build a depth estimation pipeline
from scratch, since it took some time to figure
out how to preprocess the input and visualize
the output... while Colab is more flexible for
different tasks, | guess it could range from 1
hour to a day or two.

P6



In my case, | started from an existing
template but overall it was quite fast, I'd say
less than 5 min.

P13



Findings 2 Assist in Identifying Issues with ML Models and Training Sets




It can help me understand how |
should change the model
architecture and what training
examples to add.

P10




| can manipulate the brightness
to see when the model falls.

P2



It gives me an intuition about which data
augmentation operations that my model
Is more sensitive, then | can go back to my
training pipeline, maybe increase the
amount of data augmentation for those
specific steps that are making my model
more sensitive.

P3




Using a video <as input> helps me
get a cross-time feel of how the
model performance varies, which is
hard to capture with metrics.

P10



Comparing various noise parameters in
the input to a model is useful to identify
augmentation bias.

P8



Rapsai helps
Model Selection,
Learning From Pipelines,
Study deployment

Findings 3




Building a custom webpage as
debugging tool [by coding], cost <a
junior engineer> over a month to
build. This [Rapsai] is easy to
distribute and try it immediately. It
helps debug the pipeline.

P9



It can help me understand how
should | change the model
architecture and add what
training examples.

P1



8y Visuapgaks for ML

. Lowers the barriers for ML prototyping

. Empowers users to experiment with no/low-
code environment

. Facilitates collaboration between designers
and developers



Go gle Research Philosophy Research Areas Publications People Resources Outreach Careers Blog

BLOG

Visual Blocks for ML: Accelerating machine learning
prototyping with interactive tools

FRIDAY, APRIL 21, 2023
Posted by Ruofei Du, Interactive Perception & Graphics Lead, Google Augmented Reality, and Na Li, Tech Lead Manager,
Google CoreML

Recent deep learning advances have enabled a plethora of high-performance, real-time multimedia applications based
on machine learning (ML), such as human body segmentation for video and teleconferencing, depth estimation for 3D
reconstruction, hand and body tracking for interaction, and audio processing for remote communication.

However, developing and iterating on these ML-based multimedia prototypes can be challenging and costly. It usually
involves a cross-functional team of ML practitioners who fine-tune the models, evaluate robustness, characterize
strengths and weaknesses, inspect performance in the end-use context, and develop the applications. Moreover,
models are frequently updated and require repeated integration efforts before evaluation can occur, which makes the
workflow ill-suited to design and experiment.

In “Rapsai: Accelerating Machine Learning Prototyping of Multimedia Applications through Visual Programming”,
presented at CHI 2023, we describe a visual programming platform for rapid and iterative development of end-to-end
ML-based multimedia applications. Visual Blocks for ML, formerly called Rapsai, provides a no-code graph building
experience through its node-graph editor. Users can create and connect different components (nodes) to rapidly build
an ML pipeline, and see the results in real-time without writing any code. We demonstrate how this platform enables a
better model evaluation experience through interactive characterization and visualization of ML model performance
and interactive data augmentation and comparison. Sign up to be notified when Visual Blocks for ML is publicly
available.




A\ Visual Blocks for ML —

Visual Blocks for ML

Unleash your creativity

Visual Blocks for ML is an experimental JavaScript
framework from Google that helps you add drag-and-drop
machine learning blocks to your platform. Only your
imagination limits the blocks you give your users. Off the
shelf blocks include models, user inputs, processors and
visualizations.

Colab experience and open source library will come soon.

With Visual Blocks for ML, you can drag and drop to make your ML
no coding required

Experiment with Visual Blocks

Click on any of the demos to pull up its graph in the interaction editor below

AR Effects Low Light Enhancement Create Your Own



é¢ rapsal

With the right tools,
everyone can unleash
your inner creativity.
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There are some times when you
don’t want all noise cancellation.
People sometimes prefer audio with
less noise cancellation because you
want some context.

P11
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Provide a visual programming platform for
rapidly building ML prototypes



Support real-time multimedia
user input in-the-wild



Provide interactive data augmentation



Compare model outputs and
render results directly side-by-side



Share visualization with minimum efforts



Provide off-the-shelf models and datasets



There are some times when you

don’t want all noise cancellation. People
sometimes prefer audio with less noise
cancellation because you want some context.
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Eurographics Conferenee on Visualization (EuroVis) 2020
M. Gleicher. T- berges von AniburE: and L. Viola
(Guest Editors)

Boxer: Interactive Comparison of Classifier Results

Michael Gleicher ®, Aditya Barve: Xinyi Yu, and Florian Heimerd @
University of Wisconsin - Madison
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Figure 13 Boxer examining the results
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Abstract

Machine learning practitioners
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