Language-based Colorization of Scene Sketches

CHANGQING ZOU, Sun Yat-sen University and Huawei Noah’s Ark Lab

HAORAN MO?, Sun Yat-sen University
CHENGYING GAOT, Sun Yat-sen University
RUOFEI DU, Google

HONGBO FU, City University of Hong Kong

“the car is red with black
windows”

Scene sketch

“the road is black”/
“colorize the road with black”/

“all the trees are green” “the sky is blue and the ground is
“the sun in the sky is yellow” green”

“black road” e

“the grasses are dark green”

Fig. 1. Given a scene sketch, our system automatically produces a colorized cartoon image by progressively coloring foreground object instances and the

background following user-specified language-based instructions.

Being natural, touchless, and fun-embracing, language-based inputs have
been demonstrated effective for various tasks from image generation to
literacy education for children. This paper for the first time presents a
language-based system for interactive colorization of scene sketches, based
on semantic comprehension. The proposed system is built upon deep neural
networks trained on a large-scale repository of scene sketches and cartoon-
style color images with text descriptions. Given a scene sketch, our system
allows users, via language-based instructions, to interactively localize and
colorize specific foreground object instances to meet various colorization
requirements in a progressive way. We demonstrate the effectiveness of
our approach via comprehensive experimental results including alternative
studies, comparison with the state-of-the-art methods, and generalization
user studies. Given the unique characteristics of language-based inputs, we
envision a combination of our interface with a traditional scribble-based
interface for a practical multimodal colorization system, benefiting various
applications. The dataset and source code can be found at https://github.
com/SketchyScene/SketchySceneColorization.

CCS Concepts: « Computing methodologies — Image Processing;

Additional Key Words and Phrases: Deep Neural Networks; Image Segmen-
tation; Language-based Editing; Scene Sketch; Sketch Colorization

“Both authors contributed equally to the paper.
J’LCorresponding author: mesgey@mail.sysu.edu.cn
#This project was started before this author joined Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/11-ART233 $15.00

https://doi.org/10.1145/3355089.3356561

ACM Reference format:

Changqing Zou, Haoran Mo, Chengying Gao, Ruofei Du, and Hongbo Fu.
2019. Language-based Colorization of Scene Sketches. ACM Trans. Graph.
38, 6, Article 233 (November 2019), 16 pages.
https://doi.org/10.1145/3355089.3356561

1 INTRODUCTION

In recent years, deep learning techniques have significantly im-
proved the performance of natural language processing [Kim 2014;
Lai et al. 2015; Lample et al. 2016]. Smart speakers such as Google
Home and Amazon Alexa are widely used and offer hands-free in-
teractions through language-based instructions. This has motivated
researchers to explore language-based instructions as an alterna-
tive input to crucial problems such as image editing and genera-
tion [Cheng et al. 2014; Laput et al. 2013; Park et al. 2019; Xu et al.
2018; Yan et al. 2016; Zhang et al. 2017a], and object retrieval [Hu
et al. 2016b; Li et al. 2017].

Despite the fact that a language-based interface might not provide
fine or direct control of results, it does provide unique characteristics
including being natural to everyone and being touchless, allowing
for interesting applications that are difficult or even impossible to
achieve with existing interfaces. Recent studies have also found
its unique strength for children. For example, Lovato and Piper
[2015] found that voice input is mainly used for exploration and
fun by children. A recent study in [Jung et al. 2019] showed that
voice-based interaction leads children to be more immersed in an
educational programming game. Moreover, Raffle et al. [2007] also
found that embedding sound and voice in traditional drawings by
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recording children’s storytelling while painting could provide a sig-
nificantly more effective system to support the literacy development
of children.

In this work, we present a language-based system for interactive
colorization of scene sketches, with respect to text-based color speci-
fications (Fig. 1). Although traditional interactive sketch colorization
solutions (e.g., [Qu et al. 2006; Sangkloy et al. 2017]) support precise
control via a scribble-based interface, they require explicit color
selection using color picking tools and direct target selection. By
contrast, when text-based descriptions are given through voice in-
put, our system can be more easily adopted by novice users, and is
friendly for people with upper limb impairments. Our system can po-
tentially aid in the cognitive development of children through tasks
such as color and object recognition. In addition, indirect association
between language-based instructions and scene sketches also allows
easy reusing of the same set of instructions as a theme for consis-
tently colorizing multiple different sketches involving a similar set
of objects. This is challenging for scribble-based colorization inter-
faces due to their direct and fixed relationship between scribbles
and specific sketch regions. We thus believe that a language-based
interface is complementary to a scribble-based interface for coloriza-
tion tasks, and envision a practical multimodal colorization system
that takes advantages of both types of interfaces.

Our task is challenging mainly because of the unknown and indi-
rect mapping between the input language-based instructions and
the scene sketches. More specifically, the first challenge is how to
automatically localize and segment target objects indicated by the
language-based instructions. High-quality segmentation results are
crucial to the subsequent colorization process, as users are likely
to specify different colors for individual objects. This problem of
text-based instance segmentation for scene sketches has not been
explored before. To address this issue, we propose a new architec-
ture, called instance matching model, which integrates sophisticated
networks for sketch feature extraction and multimodal (textual,
visual, and spatial information) feature fusion, together with a train-
ing strategy tailored for scene sketches upon a text-based instance
segmentation dataset consisting of 38K triplet samples of scene
sketches, text descriptions, and instances.

The second challenge is how to colorize an individual target ob-
ject instance with respect to language-based inputs. This challenge
requires our system to automatically build accurate correspondence
between object instances and text-based color specifications (e.g., in
Fig. 1, given the expression “the car is red with black windows”, black,
rather than red, should be assigned to the car windows). Additionally,
a user might wish to assign different colorization goals to different
object parts, e.g., colorizing the car body and car windows in Fig. 1.
It therefore requires the system to learn object-part-level segmenta-
tion and colorization from natural language expressions. To tackle
these challenges, we embedded the text-image interaction model
mLSTM (multimodal Long Short-Term Memory) [Liu et al. 2017a]
to a Generative Adversarial Network (GAN) to perform language-
based colorization. To train this network, we collected a large-scale
dataset consisting of 4K triplet samples of object sketches, text de-
scriptions, and colorized instances, as well as 20K quadruple samples
of color foregrounds, text descriptions, colorized backgrounds, and
segmentation label maps.
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Our system automatically responds to user-specified colorization
instructions and colorizes target objects in an input scene sketch.
Our system allows a certain range of expression structure variances
and language grammar mistakes for user-specified instructions. For
example, given different expressions but with the same intention
like “the road is black”, “colorize the road with black”, and “black
road”, our system leads to the same colorization results (Fig. 1). Our
system is also able to deal with one or multiple object instances of
the same category with a single instruction. For example, given an
instruction “all the trees are green” in Fig. 1, our system colorizes
all tree instances in green. Our experimental results in Section 8
show that the proposed colorization system achieves visually pleas-
ing results, as confirmed by multiple user studies. The impact of
individual components is validated by a set of ablation studies.

We highlight our main contributions as follows:

(1) The first language-based user-customizable colorization sys-
tem for scene sketches.

(2) The first architecture for text-based instance-level segmenta-
tion of scene sketches.

(3) Three large-scale datasets for text-based instance segmenta-
tion, foreground colorization, and background colorization.

2 RELATED WORK
2.1 Language-based Image Segmentation

Image segmentation guided by natural language expressions has
attracted increasing attention recently, due to the advance of se-
mantic image segmentation and natural language processing. Hu et
al. [2016a] proposed the first language-based (referring) image seg-
mentation technique, which directly outputs a binary segmentation
mask of a single target object given a natural language description
as a query. Their technique was improved by Liu et al. [2017a] by
employing multimodal feature fusion with a recurrent multimodal
interaction (RMI) model, which encodes sequential interactions
between textual, visual, and spatial information. Li et al. [2018]
proposed a refinement network to improve Hu et al.’s work by feed-
ing late-fused multimodal features back to low-level layers of an
image encoder with a convolutional LSTM to incorporate multi-
scale semantics for better segmentation results. Shi et al. [2018]
argued that extracting key words would be helpful to suppress the
noise in the query and to highlight desired objects. Following the
basic framework of RMI, they proposed a key-word-aware network,
which contains a query attention model and a key-word-aware vi-
sual context model for referring image segmentation. Apart from
these works, there have also been other studies focusing on visual
grounding, which aim to locate the most relevant object or region
in an image by a bounding box [Hu et al. 2016b; Mao et al. 2016] or
an attention region [Lu et al. 2016; Yu et al. 2017] based on a natural
language query.

Our instance matching model is closely related to the above ap-
proaches. However, our matching model takes as input natural
language expressions and a scene sketch, rather than a natural im-
age. In addition, our matching model aims to infer the segmentation
masks of one or multiple object instances of interest, including the
information of bounding box, binary instance mask, and class label.
Therefore, the output of our matching model is different from the



existing works in referring image segmentation or visual grounding,
which output the binary segmentation or bounding box of a single
target object instance.

2.2 User-customized Image Colorization

This task generates color images from gray-scale or sketch images
based on user inputs. Several types of user inputs currently exist,
including user-drawn color scribbles, user-chosen color reference
images, user-selected palettes, and user-specified language expres-
sions. A scribble-based interface has been commonly adopted to
specify desired colors on a gray-scale or sketch image [Ci et al.
2018; Liu et al. 2017b; Qu et al. 2006; Sangkloy et al. 2017; Zhang
etal. 2018, 2017b]. There have been several open-sourced interactive
applications for scribble-based line-drawing colorization, such as
PaintsChainer [Yonetsuji 2017] and Style2paints [Zhang et al. 2018].
As discussed previously, the scribble-based and language-based in-
terfaces have their own advantages, the former for being direct and
supporting precise control while the latter for being more natural
and accessible.

The reference image based colorization task [Fang et al. 2019;
Furusawa et al. 2017; He et al. 2018; Wang et al. 2017] takes color
reference images as input, and achieves colorization by properly
transferring colors from reference images to gray-scale or sketch
images. Such methods greatly reduce the degree of user intervention
(when colorization results are visually plausible) but at the same
time do not allow flexible control of colorization results. The palette-
based colorization approach [Chang et al. 2015] allows users to
specify a certain number of colors (up to 5 colors) from a palette
to control colorization results. This line of work mainly focuses
on automatic global color style transfer, and hence it also does not
support a high degree of user customization. Some recent studies
have been exploring multiple modalities (e.g., color palettes and
scribbles [Xiao et al. 2019b], reference images and palettes [Xiao et al.
2019a]) as input for user-customized colorization. The multiple input
modalities of the existing approaches do not contain the modality
of natural language expression.

The concept of language-based colorization was first introduced
by Chen et al. [2018b] in their language-based image editing (LBIE)
framework. Their framework contains a recurrent model using at-
tention mechanism for feature fusion between a natural language ex-
pression and an image, and thus allows language-based colorization
for object-level edge maps or gray-scale images. Bahng et al. [2018]
addressed the problem of image colorization with color hints im-
plicitly given by an input text (e.g., coloring a gray-scale image of
bird based on a phrase like “rose sensations of sky”). Their solution
focuses on the generation of color palettes to reflect the semantics
of an input text.

Our system is most close to LBIE as it is the first natural language
based colorization framework for scene sketches. Directly using
LBIE for our problem is infeasible because of the lack of pair-wise
scene sketch and color image data. We address this challenge by
decomposing a scene sketch into foreground object instances and
background regions, and make this problem solvable by training
deep networks on pair-wise object-level sketch and color image
data that are easy to collect from the Internet or existing datasets.
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Although LBIE can be directly used for both foreground object
instance colorization and background colorization, the experiments
in Section 8 show that it is less effective than our networks. There
are some other works that study the mutual reasoning and inference
between language expressions and colors [Monroe et al. 2016, 2017].
These works could potentially be combined with our system to
enable more accurate color control.

3 SYSTEM OVERVIEW

Our current system takes text-based colorization instructions as
input. Such instructions can be obtained through voice or typing.
The voice-based interface is more natural but might suffer from
speech-to-text errors. Integrating our system with direct voice input
would be interesting future work.

As illustrated in Fig. 2, given an input scene sketch and a natural
language expression for color specification, our system offers two
modes for colorization: foreground and background. Two modes
are adopted because foreground objects (e.g., cars, trees, sun) and
background regions (e.g., sky, ground) have very different image
characteristics, and thus are better dealt with in different ways. In
our system, we classify all sketched objects as foreground and the
regions between sketched objects as background. Assuming a user
does not colorize foreground objects and background regions in a
single language expression, either the foreground or background
mode can be easily determined by checking the category label in a
given instruction (e.g., “sky” indicates the background label.)

In the foreground mode, a network called instance matching model
(Section 4) is first used to locate the foreground object instance(s)
of interest indicated by the natural language instruction (more pre-
cisely, predicting the instance-level mask of the target object in-
stance(s)). Next, a new network architecture called foreground col-
orization model (Section 5.1) specifically designed for foreground
objects is employed to colorize these instance(s). In the background
mode, a third network architecture called background colorization
model (Section 5.2) specifically designed for background stuff is
employed to perform simultaneous segmentation and colorization.
We do not use a specific instance matching model for the back-
ground, since the colorization requirements for background regions
are less complex than those of foreground object instances. With
this divide-and-conquer and progressive strategy, the colorization
of a complex scene sketch becomes feasible, without being trained
on a large-scale set of scene-level sketch and image pairs with the
entire annotated text instructions.

4 INSTANCE MATCHING

The instance matching model takes as input a scene sketch image
and a language-based instruction (a phrase or sentence), and outputs
the pixel-level mask of the target object instance(s), including the
information of bounding box, class label, and binary instance mask.
This problem is challenging and there exists almost no prior work
directly studying it. We refer to this problem as referring instance
segmentation and address it with a new architecture integrating a
set of sophisticated networks.

Our proposed architecture for instance matching as illustrated in
Fig. 3 mainly includes two phases: sketch image feature extraction,
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Fig. 3. Network architecture of the instance matching model in Section 4. This network is trained in an end-to-end manner to obtain the binary mask (shown
in (b)). In the inferring phase, the generated binary mask is fused with the instance segmentation results generated by Mask R-CNN [He et al. 2017] to obtain

the final results.

and text-image fusion. The former one extracts the image features of
the sketch, and the latter takes them along with a natural language
description as inputs, and generates the binary mask of the target

object(s) (Fig. 3 (b)). We use the DeepLab-v2 network [Chen et al.

2018a] as the sketch image feature extractor as it is the most effective
network for semantic segmentation of scene sketches according to
the study in [Zou et al. 2018]. The RMI model [Liu et al. 2017a]
which was originally proposed for referring image segmentation,
is employed for text-image fusion phase. The final instance-level
segmentation information is obtained by fusing the binary mask(s)
and the results generated by Mask R-CNN [He et al. 2017] (separately
trained). The ignoring-background training strategy [Zou et al. 2018]
tailored for sketch data, which only penalizes the cross entropy loss
of stroke pixels rather than every pixel in a sketch image, is leveraged
to train all the networks. In the remainder of this paper, we refer to
this architecture empowered by DeepLab-v2 and RMI as well as the
ignoring background training strategy as DeepLabv2-RMI.

Methodology. In the sketch image feature extraction phase, given
an image of size H X W, a ResNet-101 based DeepLab-v2 model is
adopted to extract sketch image features with size H' x W’ X 1000
where H = H/8 and W’ = W /8. The sketch image features are then
concatenated with spatial coordinates to produce a H' X W’ x (1000 +
8) tensor. The 8 spatial coordinate dimensions, where the normalized
horizontal and vertical positions individually use 3 dimensions each
and the remaining 2 dimensions are 1/W” and 1/H’, are determined
by following the implementation of [Liu et al. 2017a].
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In the text-image fusion phase, a two-layer LSTM architecture
is employed for multimodal interaction between cross-domain fea-
tures. The text-only LSTM encodes the language instruction con-
sisting of several words {wt}thl from their mapping embedding
{et}z;1 (e; € R®) and uses the hidden representation {ht}thl
(h; € RY) for each word as the text features. At each time step
t, the four kinds of cross-domain features (text embedding e;, text
semantic h;, extracted image features v and spatial information
s € R®) are concatenated as a joint input for the convolutional
multimodal LSTM (mLSTM). Before concatenation, e; and h; are
initially tiled to H” X W’ to match the dimensions. The mLSTM is
applied to all spatial locations in the concatenated feature maps,
and output hidden states {h’ t}thl (h’; € R™). The binary mask
R € RW*H s produced from h/T via a projection and an upsam-
pling layer. The network for binary mask generation is trained in
an end-to-end manner. On the inferring stage, the generated binary
mask is fused with the output of Mask R-CNN to produce final
instance segmentation results. Specifically, the segmented instances
from Mask R-CNN with more than 50% mask pixels covered by the
generated binary mask are used as the matched instances, i.e., the
final segmentation results.

Training Loss. Given a binary drawing mask of a sketch M €
RW*H (where M¥ = 1 indicates a black foreground pixel at po-
sition (i,j) and M¥ = 0 indicates a white background pixel) and
the ground truth binary segmentation mask R, the loss function is
formulated as the conventional cross-entropy empowered by the



ignoring background training strategy:

W H

i=1 j=1
1)
where N = ZZI Zj}il MU is the number of black pixels (M* = 1)
in the sketch image.

5 COLORIZATION

Although the existing method LBIE [Chen et al. 2018b] can be di-
rectly used to colorize a segmented object sketch or background
region, it suffers from artifacts as shown in Section 8. There are
two major limitations with LBIE. First, the architecture of its image
encoder and decoder is not suitable for the sketch data or back-
ground regions. Second, its image-text fusion model is not effective,
producing poor-quality results. For example, given an instruction
“the car is red with dark gray windows”, LBIE failed to segment the car
windows and colorized the car windows in red, as shown in Fig. 11.
To achieve better colorization, we designed new architectures tai-
lored for the characteristics of foreground and background regions
for the tasks of both foreground and background colorization.

5.1 Foreground Colorization

Overview. As illustrated in Fig. 4, our network for foreground
object instance colorization is essentially a generative adversarial
network (GAN) consisting of a generator G and a discriminator D.
Unlike traditional generators, such as pix2pix [Isola et al. 2017], only
taking as input the single-modal visual image data, our generator G
needs to model the interactions between the text description and
visual information since the generated colorization results should
be constrained by the text information.

Generator & Discriminator. The generator G consists of three
modules: an image encoder which encodes the features of the H X W
input sketch image of a segmented object instance generated from
the instance matching stage, a fusion module which fuses the text
information of a natural language expression into the image feature
maps generated by the image encoder, and finally an image decoder
which takes the fused features and produces an H X W X 3 output.
We use the MRU blocks [Chen and Hays 2018] as the backbone
of both the encoder and decoder modules. The MRU block, which
was first proposed in [Chen and Hays 2018], takes an extra image
input and produces new feature maps by dynamically merging the
information in the extra image into the original input feature maps.
It is proven that the MRU block has superior performance for sketch
data over naive convolutional approaches. In our implementation,
we use one convolution layer and four cascaded MRUs to encode
the H X W input object sketch image into H” X W’ feature maps
(H = %, w’ = %) in the encoder. For the decoder, five MRUs
are cascaded as a deconvolutional network. Skip-connections are
applied between the encoder and the decoder. The fusion module
is an RMI model similar to the one used in the instance matching
stage (Fig. 3). It incorporates the text information into the H x W’
image feature maps, and outputs H’ x W’ fusion features. In our
experiments, H and W were both set to 192.

(Mij * (ﬁij * —log (Rij) +(1-RY) x —log (1 - Rij)))
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The discriminator D takes as input the synthesized or ground-
truth color image, and decides whether the image is fake or real. We
also build the discriminator with the MRU blocks. D outputs two
logits, one for GAN loss and the other for classification loss.

Loss Functions. Our GAN objective function is similar to the
one in SketchyGAN [Chen and Hays 2018] and can be expressed
as LgaN (D, G). As SketchyGAN, an auxiliary classification loss
Lac(D) for D is introduced to maximize the log-likelihood by the
predicted and ground-truth labels. The generator maximizes the
log-likelihood as L4 (G) = Lgc(D) with the discriminator fixed but
the image to be classified as a synthesized one.

Different from SketchyGAN, our task intends to generate col-
orization results with respect to user-specified instructions, instead
of diverse results. We thus do not exploit the perceptual loss or the
diversity loss. We replace the direct L1-distance in SketchyGAN
with smooth L1-distance as the supervision loss, as a color term in
our study might not correspond to a unique RGB value. For example,
in Fig. 4, we might say the colors of both the synthesized image
and the ground-truth are “dark blue” even though their correspond-
ing RGB values are slightly different. Hence the penalty should be
smaller than direct subtraction. We define the supervision loss as:

3(Glx, ) — y)?
IGCx,s) =yl = 3

in which x is the input instance sketch image, y is the ground truth
cartoon image, and s is the input text. Ly (G) is evaluated at each
pixel and summed together to evaluate the loss for a whole image.

The complete loss functions of foreground instance colorization
for discriminator D and generator G are defined as:

L(D) = Lgan (D, G) + A1Lgc(D), (3

if |G(x,s) —ylh <1

Lsup(G) = { if |G(x,s) —yll1 2 1

@

L(G) = LgAN(G) = A1Lgc(G) + A2Lsup(G). 4)

where A1 and A, are the coefficients. The discriminator D aims to
maximize L(D), while the generator G aims to minimize L(G).

5.2 Background Colorization

Overview. As illustrated in Fig. 5, the proposed network for back-
ground colorization is a conditional GAN (cGAN) network, condi-
tioned by a foreground image. It fills in the background regions of
the input foreground image and produces a 768 x 768 high-resolution
color image. The generator G consists of a colorization branch and
a segmentation branch. The discriminator D is attached to the col-
orization branch and its design follows a general design of a dis-
criminator in a cGAN [Isola et al. 2017] with minor adaptions. The
whole network is trained in an end-to-end manner.

Generator & Discriminator. The colorization branch in the genera-
tor G has a similar structure to the network for foreground coloriza-
tion. It shares the image encoder with the segmentation branch with
an encoder-decoder structure. The image encoder in the generator
G uses the residual block [He et al. 2016] units as its backbone. We
choose the residual blocks here rather than the MRU blocks used for
foreground colorization, as the residual blocks have superior capa-
bility in producing large-size smooth and gradual texture compared
with the MRU blocks, and are thus more suitable for background
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decoder, and a Res-Block based convolutional discriminator. This architecture is referred to as the BG-RES-RMI-SEG network.

colorization. The first unit of the image encoder employs a gen-
eral convolutional layer, followed by four cascaded residual units,
whose corresponding numbers of residual blocks are {3, 4, 6, and
3}, respectively. This structure is similar to ResNet-50. It is worth
mentioning that the single colorization branch in fact performs im-
plicit segmentation. Without the explicit segmentation branch, the
generator G can still segment and colorize the background with the
help of the mLSTM. The explicit segmentation branch is used to en-
hance segmentation results, producing more accurate segmentation
boundaries, as shown in Fig. 15. The decoder of the segmentation
branch, which produces the segmentation label map, is made up of a
chain of general deconvolutional layers. The discriminator D takes
the already colorized foreground image as the conditional input and
decides whether a synthesized or ground truth color image is fake
or not. It employs a Res-Block based image encoder like the one
used in the generator G.

Loss Functions. The cGAN objective function has a similar form to
the one in [Isola et al. 2017] and is expressed as L,gan (D, G). There
are three types of loss for the training of generator G: Lcgan (G),
Lseg(G), and Lr1-sup(G). Legan (G) is the conditional GAN loss,
and Lse4(G) is the segmentation loss with the form of cross entropy,
while Lp1—54p(G) provides the supervision to the network with the
L1-distance between generated images and ground truth images.
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The background colorization model fills the background regions
with color while leaving the foreground objects unchanged. There-
fore, L1-s54p(G) does not need to take into account the penality of
foreground object regions. We therefore propose a training strategy,
referred to as w/o-FG, which ignores the contribution of the fore-
ground objects in computing the supervision loss. We use a binary
mask M¥ to divide the foreground and background regions (M¥/ = 1
indicates a background pixel; otherwise, a foreground pixel). Given
the paired image data, i.e., the input foreground image x and the
ground truth image y, and the natural language description s, the
supervision loss is then formulated as follows:

W H
Liiaup(©) = 55 3 3 (M7 16697 = yl). 9)
i=1 j=1
where N = Z}Zl Z]H:1 MU is the number of background pixels in
the input image x.
In summary, the loss functions of background colorization for
discriminator D and generator G are formulated as

L(D) = Legan (D,G), (6)

L(G) = Legan(G) + AlLseg(G) + AZLLlfsup(G)» 7)

where A1 and A, are the coefficients. See Section 1.1 in the supple-
mentary material for more details about the loss functions.



the bus has orange body and the two trees on the left of the
blue windows house are light green
(a) (b) ()

all the clouds are dark gray

Fig. 6. lllustration of the dataset for instance matching. Each foreground
object instance has a ground-truth binary mask (in colors) and a corre-
sponding natural language expression with optional location information.
Random colorization information (in blue, e.g., “light green”) is included in
the expression, following a set of sentence patterns, to support both instance
matching and foreground colorization using the same expressions in the
testing stage.

6 DATASETS

We built the datasets for training and testing our networks mainly
on the SketchyScene dataset [Zou et al. 2018], which provides the
instance and semantic segmentation ground truth for more than 7k
scene sketch templates. Below we briefly describe each dataset (for
more details, please see Section 2 in the supplementary material).

6.1 Data for Instance Matching

As SketchyScene has provided the instance segmentation ground
truth for a large number of scene sketches, theoretically we only
need to prepare the associated language expressions including the
optional location information of each object instance, e.g., “the tree in
the middle”, in the sketches to train the instance matching network.
However, in practice, a user might specify an object of interest
with location information and colorization goal within a single
expression. To address this issue, we need to provide complete text-
based instructions including the object category, optional location
information, and colorization goal, e.g., “the tree in the middle is
dark green” for each object instance.

Manually preparing user instructions for each object instance
in a large-scale set of scene sketches requires a huge amount of
user labour. We therefore turned to designing a fully automatic
rule-based algorithm, which tries to imitate human cognition and
expressing habits, to generate the user instructions. Specifically, the
algorithm first automatically generated a phrase about an object and
its location information (if necessary), e.g., “the tree in the middle”/
“all the clouds”, for each object instance. Afterwards, following a set
of sentence patterns like “..is/are..”, “...has/have..”, the algorithm
randomly selected a colorization description (e.g., “dark green”) from
the instance colorization dataset (see below) and then attached it to
each phrase to generate a complete instruction. Although we only
designed a limited number of sentence patterns for each category
of foreground objects, as shown in Section 7, the model trained on
this dataset could still support the expressions within a large degree
of flexibility.

We collected 38,557 pairs of object instance segmentation mask
and language expression in total through the above automatic algo-
rithm. These data were split into three sets: 30,094 pairs for training,
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the car has the person has
pink body red hair and

and light :f;f:;;;fy is in pink
blue shirt with
windows eyan pants

the left the chicken
the tree on house is in front of
the rightmost purple the house is
is light with red light brown
green roof

Fig. 7. lllustration of the dataset for foreground instance colorization. 4,587
triplets of cartoon image, edge map (sketch), and text description were
collected. The location information (in blue) was randomly added to color
descriptions to imitate the location-related instructions users might assign
to the system.

2,372 pairs for validation, and 6,091 pairs for testing, which covered
1,337 4+ 116 + 242 = 1,695 scene sketches from the SketchyScene
dataset. The object instances were from 24 categories as shown in
Table 1. This dataset is referred to as MATCHING dataset below.
Several representative samples are illustrated in Fig. 6.

6.2 Data for Foreground Instance Colorization

The data for foreground instance colorization includes color ob-
jects, the corresponding edge maps (sketches), and the language
descriptions regarding the color information of those color objects.
To collect these data, we crawled cartoon instance images from the
Internet and then leveraged X-DoG [Winnemoller 2011] to extract
an edge map as the corresponding sketch for each cartoon image.
We employed 6 subjects to manually create color annotations for
each cartoon image and then produced a color description auto-
matically for each cartoon image based on pre-defined sentence
structure patterns. In this way, we built a collection of in total 4,587
triplets of cartoon image, edgemap, and language description, cover-
ing the same 24 object categories as the data for instance matching.
These data were split into two sets: 3,822 triplets for training, 765
triplets for validation. Moreover, to evaluate the performance of our
instance colorization model on real sketches rather than edgemaps,
we also built a test set which includes 1,734 pairs of instance sketches
and descriptions. These instance sketches which cover all the 24
object categories were extracted from the scene sketches of the test
set in SketchyScene. All the cartoon images and edgemaps/sketches
were resized to 192 X 192. The descriptions cover 16 different colors.
The number of colors for each object instance varies from 1 to 3.
The number of words in each description varies from 4 to 15, with
an average of 6. We randomly added the location information based
on pre-defined sentence structure patterns for each collected de-
scription. This dataset is referred to as FOREGROUND dataset below.
Several representative samples are shown in Fig. 7.

6.3 Data for Background Colorization

Four modality data, namely, foreground image (with empty back-
ground), color image (with color background), text description, and
segmentation label map are required for background colorization.
To collect such data, we composed images of foreground objects by
placing color object instances into 768 X 768 white images following
the object layout information provided by the sketch templates from
the SketchyScene dataset. We then employed 24 users to produce
the color images (by manually painting the background regions
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Table 1. Details for each category of the dataset for instance matching.

bench bird bus butterfly car cat chick cloud cow dog duck grass horse house moon person pig rabbit road sheep star sun tree truck|Total

Train| 605 1725 716 343 1205 685 836 1886 580 1254 958 1941
Val 15 77 32 10 71 64 54 160 102 93 76 195
Test | 94 188 36 48 146 86 178 368 105 218 156 347

184 2209 56 2655 188 647 744 810 62 1068 8504 233 |30094
22 88 6 139 12 97 50 140 14 64 778 13 |2372
80 776 50 845 66 72 118 159 57 182 1651 65 | 6091

with solid colors). For simplicity, we considered only two types of
background: sky and ground. The segmentation information and
the corresponding text-based color descriptions for the background
regions were obtained by examining different painting colors within
the background regions. For each foreground image, we augmented
the data by altering the colors of background regions in the user
painting to generate three additional pairs of color image and de-
scription. In Fig. 8, we illustrate a representative sketch template,
the corresponding foreground image, the color image with user-
painted background, segmentation map, and 3 pairs of augmented
color image and text description. With such data augmentation, we
in total obtained 15,728, 1,200, and 2,908 quadruple data for training,
validation, and testing, respectively. The text descriptions totally
cover 11 colors. The number of words in each description is 9 on
average. This dataset is referred to as BACKGROUND dataset below.

7 INSTANCE MATCHING EXPERIMENTS
7.1 Ablation Studies

We validated the design choices of our proposed instance matching
model in three main aspects: feature extraction, text-image fusion,
and the effect of training with/without background (for more imple-
mentation details, see Section 1.2 in the supplementary material).

Feature Extraction. For sketch feature extraction, we evaluated
three alternatives: FCN-8s [Long et al. 2015], SegNet [Badrinarayanan
et al. 2017] and DeepLab-v3+ [Chen et al. 2018c]. These alterna-
tives are the most effective networks for image feature extraction.
FCN-8s is empowered by combining both coarse and fine image fea-
tures from different layers during upsampling to allow the network
to discriminate more low-level features (e.g., shape and boundary).
SegNet improves its feature extraction capability by leveraging an
indices-based unpooling scheme for decoding to form a symmetri-
cal encoder-decoder architecture, which improves the upsampling
performance. To enlarge the fields of view of filters, DeepLab-v2
employed by DeepLabv2-RMI learns image features by exploiting
atrous convolution and atrous spatial pyramid pooling (ASPP). Inher-
ited from Deeplab-v2, Deeplab-v3+ further enhances image feature
learning ability by augmenting the ASPP module with image-level
features which contain contextual information and by replacing the
bilinear upsampling process with a decoder.

Text-image Fusion. We studied how different cross-domain fusion
mechanisms perform on this task. We validated the RMI model
employed in DeepLabv2-RMI with two alternatives: an attention-
aware RMI model (RMI-Attn) and a recurrent attention injected
RMI model (RMI-RAttn). In the RMI-Attn mechanism, we pre-
sumed that hidden states from the intermediate mLSTMs, rather
than merely the last one as in RMI model, might contribute more to

the final multimodal feature. This presumption was based on our ob-
servation that some words at the end of a sentence, e.g., “The person
on the right has brown hair and is in purple shirt”, are not relevant
to the segmentation. We then introduced a shared fully connected
layer f to learn a word-level attention and used it to re-weight the
hidden states from all time steps to obtain an attention-aware multi-
modal feature (i.e., RMI-Attn produces the attention only when the
last time step finishes).

RMI-RAttn is another alternative fusion scheme, where word-
level attention is used in a recurrent manner as LBIE [Chen et al.
2018b]. The major difference between RMI-RAttn and RMI-Attn is
that the attention is computed based on the hybrid of word features
and input multimodal features (from each time step) within each
image region at every time step recurrently. At each time step of
RMI-RAttn, the attention produced within a certain image region
indicates the importance of each word to that region. Then, an
attentive feature map, generated by incorporating the attention and
the word features, is fed to mLSTM as input. The multimodal feature
map used to generate the segmentation mask of the target object
instance(s) is achieved at the last time step.

Training with/without Background. We also validated the effect
of the ignoring background training strategy we formulate in Eq. 1.
Apart from this training strategy as presented in Section 4, we
trained the DeepLabv2-RMI model by considering the contribution
of all the W x H pixels. We refer to the former as w/oBG and
the latter as withBG. We next present our evaluation of all the
above models on both the validation and test sets in the MATCHING
dataset.

7.2 Results

Quantitative Results. Following Mask R-CNN [He et al. 2017]
and RMI [Liu et al. 2017a], we use mask IoU and mask AP, APsq
and AP75 as metrics to measure the segmentation accuracy of each
comparison model. We summarize the comparison results in Table 2,
where we can see the DeepLabv2-RMI architecture with the ignoring
background training strategy achieves the best overall performance.

From the study of feature extraction we can see that FCN-8s and
SegNet perform worse than DeepLab-v2 on most of the metrics. This
indicates that their upsampling schemes, i.e., combining coarse and
fine features or using indices-based unpooling, do not suit sketch
images well. DeepLab-v3+ performs slightly worse than DeepLab-v2
on most of the metrics, possibly because it fails to extract enough
contextual information into the image-level features due to the
sparsity of sketch images.

From the study of text-image fusion, we can see that the RMI-
Attn model is close to but slightly weaker than the RMI model.
This may be because the former is forced to emphasize particular
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(a) Sketch template (b) Foreground image (c) Segmentation

“the sky is blue and the
ground is green”
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“the sky is brown and the
ground is black”

“the sky is purple and the
ground is gray”

“the sky is red and the
ground is brown”

Fig. 8. Illustration of the data collection for background colorization. The three right-most columns are three pairs of color image and text description
generated by automatically altering the colors for background regions in the user painting.

words while paying less attention to other words and thus might
lose important information for segmentation. In our task, a target
object could be constrained by other reference information like
relative position and reference object (e.g., “the car in front of the
house”). Assigning too much weight to particular words (like “car”
and “house”) might result in inaccurate segmentation due to the lack
of contextual information. As for the RMI-RAttn model, its accuracy
drops by 8 — 12% over the RMI model. This does not agree with the
experimental results in referring image segmentation works such
as [Shi et al. 2018]. This is possibly because, unlike natural images,
the contextual information within each image region in the feature
map of sketch images is too weak to provide strong constraints for
the attention learning, thus making it difficult to match the correct
text information with image regions.

By comparing the withBG model with w/oBG, we can see that
the performance of withBG drops sharply on all the metrics, in-
dicating that the ignoring background training strategy indeed has
significant effects on referring image segmentation, as it does on the
task of semantic segmentation in SketchyScene [Zou et al. 2018].

Qualitative Results. Our visual comparisons confirm the results
indicated in Table 2. In Fig. 9, we show representative results of
the comparison methods on a typical scene sketch from the test set.
We can see that our DeepLabv2-RMI model generally produces the
results close to the ground truth.

By comparing the results of all the feature extractors, we can
see that both FCN-8s and SegNet perform worse than DeepLab-
v2 when the input instructions are complex. For example, given
the instruction “the bench in front of the house is brown” in Fig. 9
(Bottom) where another word “houses” is used as the reference of
the target object “bench”, both FCN-8s and SegNet fail to segment
the target object. The visual quality of DeepLab-v3+ is close to that
of DeepLab-v2.

By observing the results from the text-image fusion study, we can
see neither RMI-Attn nor RMI-RAttn can successfully segment the
target objects in all cases. Specifically, RMI-Attn fails to understand
the complex instructions (e.g., Fig. 9 (Bottom)) due to the unreli-
ably learned attention. By contrast, RMI-RAttn can understand the
complex instruction but fails to segment multiple objects (e.g. the
“grasses” in Fig. 9 (Middle Row)). It is possibly because the incorrect
attention makes the model hard to associate the text information
with all the corresponding regions in the image correctly. From
Fig. 9, it can be observed that the withBG model performs poorly

and can hardly segment any target object due to the poor capacity
of sketch image feature extraction.

Table 2. Quantitative comparison of text-based instance segmentation per-
formances (mask loU & mask AP) from different alternative approaches on
our MATCHING dataset.

mloU mask AP
Model val test
val | test
AP \APSO\AP75 AP \APSO\AP75

Feature extraction

FCN-8s 70.83 | 78.05 | 41.77 | 64.06 | 49.17 | 44.28 | 68.56 | 51.70
SegNet 78.62 | 71.83 | 46.29 | 71.68 | 54.11 | 44.21 | 67.66 | 51.98
DeepLab-v3+ | 83.27 | 76.07 | 46.44 | 72.47 | 53.77 | 45.07 | 69.36 | 52.86
DeepLab-v2 | 83.67 | 75.90 | 47.04 | 73.09 | 54.72 | 45.97 | 70.79 | 53.90

Text-image fusion

RMI-Attn | 83.52 | 75.52 | 46.94 | 73.05 | 54.59 | 45.35 | 69.94 | 53.15
RMI-RAttn | 73.53 | 66.25 | 38.60 | 60.36 | 44.55 | 37.82 | 57.97 | 44.60
RMI 83.67 | 75.90 | 47.04 | 73.09 | 54.72 | 45.97 | 70.79 | 53.90

Training with/without background

withBG 26.82 | 2875 | 584 | 7.62 | 7.16 | 596 | 7.94 | 7.19
w/oBG 83.67 | 75.90 | 47.04 | 73.09 | 54.72 | 45.97 | 70.79 | 53.90

7.3 Generalization Study

We evaluated the generalization ability of the instance matching
model. From the collected data in the user study of our system’s
overall performance (Section 8.3), we found that some language in-
structions were clearly beyond the coverage of the sentence patterns
of the training data. Apart from expected short-phrase instructions
like those in Fig. 1, there are mainly four other cases as shown in
Fig. 10: 1) Part-Aug: instructions with descriptions about object parts
(e.g., “tires” and “wheels”) which never exist in the training data; 2)
Gram-Err: instructions with grammar errors; 3) Multi-Cate: instruc-
tions involving objects from multiple categories; and 4) Alt-Name:
instructions with alternative category names (e.g., “taxi”) which do
not exist in the training data.

We observe that, besides expected short phrases, the matching
model can still successfully segment target objects in the cases of
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Feature extraction

Text-image fusion

Effect of BG DeepLabv2-RMI Ground

FCN-8s SegNet DeeplLab-v3+ RMI-Attn

RMI-RAttn withBG

w/o BG Truth

“the person has light brown hair and is in red shirt and dark blue pants”

“the grasses are dark green”

“the bench in front of the houses is brown”

Fig. 9. Representative results of alternative approaches on a typical sketch in the MATCHING dataset.

[Part-Aug] [Gram-Err] [Multi-Cate] [Alt-Name]

the car is red with black color the a bus green and  the bus is blue and the
windows and green tires or are light blue windows tree is light green
wheels

the taxi is yellow with
blue windows

Fig. 10. Generalization study for instance matching on instructions in the
wild.

Part-Aug and Gram-Err. As for the case of Multi-Cate, the matching
model only segments target object(s) described by the words in
the first part of an instruction in most testing cases. (e.g., only the
“bus” is segmented in the example of Multi-Cate in Fig. 10, and only
the “tree” is segmented when given the expression “the tree is light
green and the bus is blue” where “tree” and “bus” were presented in
reverse order). This can be explained by the fact that our training
dataset does not include this kind of instructions with a different
sentence structure. This causes confusion for the model when it
sees such wild instructions. In the case of Alt-Name, the model can
hardly segment any object because the alternative object name is
not understood at all and is regarded as an unknown word. With the
lack of the most important information, it is difficult for the model
to distinguish the target according to the rest of the information in
the sentence.
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the car is red

with dark the left person has

gray windows red hair and is in
pink shirt and

blue pants
the horse in
front of the the second
tree is dark chicken on the
gray Left is yellow

Fig. 11. Network comparison for foreground object instance colorization:
FG-MRU-RMI vs. LBIE [Chen et al. 2018b].

8 COLORIZATION EXPERIMENTS

In this section, we first study the alternatives for the foreground ob-
ject instance colorization network, i.e., FG-MRU-RM], and the back-
ground colorization network, i.e., BG-RES-RMI-SEG. Afterwards,
we describe a user study we conducted to investigate the faithful-
ness and effectiveness of the proposed colorization networks. We
finally study the overall performance of the proposed system and in-
vestigate its generalization and usability (for more implementation
details, please see Section 1.2 in the supplementary material).

8.1 Alternative Studies

8.1.1 Foreground Instance Colorization. We first study the effec-
tiveness of our foreground instance colorization solution, FG-MRU-
RML, in comparison with LBIE [Chen et al. 2018b], which is the
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right is dark
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Fig. 12. Building block (backbone) comparison for foreground instance
colorization: MRU (the adopted one) vs. ResNet vs. Pix2Pix.

state-of-the-art language-based automatic image colorization net-
work. Then we investigate what kind of backbone (building block)
is the most effective. We mainly compare the employed MRU blocks
with ResNet blocks [He et al. 2016] and Pix2Pix blocks [Isola et al.
2017], which are the building blocks widely used in deep models for
various applications. We trained all the comparison models on the
same training set of the FOREGROUND dataset. For fair comparison,
all the hyper-parameters for these models were set to be equivalent.

FG-MRU-RMI vs. LBIE. We tested the two methods on all the ex-
amples from the test set of the FOREGROUND dataset. In Fig. 11,
we show several representative results. It can be seen that FG-MRU-
RMI significantly outperforms LBIE in the aspect of faithfulness, i.e.,
whether the colorization results are consistent with the language
descriptions. For instance, given a user instruction “the car is red
with dark gray windows” and a car sketch, in the LBIE result there
is an undesired green region in the front part of the car, and the car
windows are not in dark gray. By contrast, the FG-MRU-RMI result
meets the user’s colorization requirement. In the aspect of effective-
ness, which measures the overall visual quality of the colorization
results, FG-MRU-RMI is also superior to LBIE. For example, color
bleeding artifacts are more apparent in the LBIE results.

From the results, e.g., the yellow chicken in the bottom row and
the light blue house in the top row, we can also see that both FG-
MRU-RMI and LBIE are capable of understanding the user-specified
color information reasonably well (i.e., associating a specific color
with the color described in the text description). However, when an
instruction contains different colorization requirements for different
object parts, e.g., “the house is light blue with brown roof”, LBIE
often fails to assign the right colors to the corresponding object
parts (e.g., the roof of the house is colorized with blue by LBIE). By
contrast, FG-MRU-RMI achieves better results in such scenarios,
indicating that FG-MRU-RMI is more capable of inferring the part-
level segmentation of an object-level sketch.

MRU vs. ResNet vs. Pix2Pix. With the same architecture shown
in Fig. 4, we built two alternative networks for FG-MRU-RMI by
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Foreground image LBIE BG-RES-RMI-SEG (Ours)

the sky is
blue and the
ground is
green

the sky is
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the ground
is gray

Fig. 13. Network comparison for background colorization: LBIE vs. BG-RES-
RMI-SEG.

replacing the MRU blocks with ResNet or Pix2Pix blocks, respec-
tively. We then compared these three networks using the test set of
the FOREGROUND dataset. In Fig. 12, we show several representa-
tive results where we can see that MRU achieves relatively better
performance than ResNet in the aspect of faithfulness (e.g., see the
dog example). The results generated by MRU also have better visual
quality than those by Pix2Pix, e.g., the color of the bus windows has
less bleeding in the results of MRU.

8.1.2  Background Colorization. We first compare our BG-RES-
RMI-SEG network in Fig. 5 with LBIE in the task of background
colorization. Then we compare the performance of the three build-
ing blocks, i.e., MRU, ResNet, and Pix2Pix. Lastly, we present our
ablation study on the effects of the segmentation branch of BG-
RES-RMI-SEG and the w/o-FG training strategy (i.e., excluding the
contribution of foreground) for the computation of the supervision
loss. We trained all the compared models on the training set in the
BACKGROUND dataset. All the hyper-parameters for the compari-
son models were set to be identical to result in fair comparisons.

BG-RES-RMI-SEG vs. LBIE. We compared LBIE and BG-RES-RMI-
SEG on all the examples from the test set of the BACKGROUND
dataset. In Fig. 13 we show the results from two representative
examples, from which we can see that both LBIE and BG-RES-RMI-
SEG can colorize most background regions with correct colors. This
indicates that both LBIE and BG-RES-RMI-SEG have the ability
to understand instructions, do segmentation, and paint with the
required colors. Relatively, BG-RES-RMI-SEG is superior to LBIE.
This can be observed from the green area on the right side of the
house (the upper example) and the purple regions close to the dog
(the bottom example) in the LBIE results. The better performance
of BG-RES-RMI-SEG is mainly because of the segmentation branch
and the stronger multimodal feature learning strength brought by
the RMI module and ResNet block chain.

MRU vs. ResNet vs. Pix2Pix. Similar to foreground colorization, we
built two alternative networks for BG-RES-RMI-SEG by replacing
its ResNet blocks with MRU or Pix2Pix blocks, respectively. For fair
comparison, the w/o-FG strategy was used for all the three networks.
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Foreground image MRU Pix2Pix ResNet

the sky is
blue and
the ground
is green

the sky is
gray and
the ground
is brown

Fig. 14. Backbone comparison for background colorization: MRU vs. Pix2Pix
vs. ResNet (the adopted one).

In Fig. 14 we show the results of the comparison networks on two
representative examples. ResNet outperforms the alternatives. It
can be easily seen that Pix2Pix produces obvious artifacts, possibly
because the cascaded 5-layer Pix2Pix building blocks are too shallow
for high-resolution images (768 X 768 in our experiments). MRU
performs better but still suffers from artifacts around the boundaries
of different semantic regions. This might be because the MRU blocks
are particularly proposed for inferring color images from sketches
rather than painting large blank regions in our scenario.

Ablation Study. To investigate the effects of the explicit segmen-
tation branch of the architecture shown in Fig. 5 and the w/o-FG
training strategy, apart from BG-RES-RMI-SEG, we built three ad-
ditional comparison models, including w/o SEG: the model without
the segmentation branch; with FG: the model involving foreground
objects in the supervision; w/o SEG - with FG: the model without
the segmentation branch but with the contribution of foreground
objects considered. We compared these four models on all the ex-
amples from the test set of the BACKGROUND dataset.

The comparison results of a representative example is shown
in Fig. 15. By pair-wisely comparing the results generated by w/o
SEG and ours, and those generated by with FG and w/o SEG -
with FG we can see that, without the segmentation branch, the
models produce less reasonable boundaries between the regions
with different semantic labels (i.e., sky and ground). We can also see
that, without the w/o-FG training strategy, the same architecture
produces artifacts around the boundaries of the foreground objects
(see the boundaries of the clouds in the results of with FG and w/o
SEG - with FG). By contrast, our proposed model achieves the best
performance. This conclusion will be further verified by our user
studies.

8.2 User Studies

Study Settings. To further quantitatively evaluate the colorization
results of the alternative experiments in Section 8.1, we designed
and conducted two on-line user studies, effectiveness study and
faithfulness study. The effectiveness score reflects the capability of
the image encoder and decoder in the compared networks. The
faithfulness score can be affected by the capabilities of both the
text-image fusion module and the image encoder-decoder structure.
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Foreground image w/o SEG — with FG w/o SEG

the sky is gray and
the ground is black

Ground-Truth with FG BG-RES-RMI-SEG (ours)

Fig. 15. lllustration of the advantages of the segmentation branch of the
proposed architecture and the w/o-FG training strategy for background
colorization.

We recruited 26 participants for both of the studies. All partici-
pants had no prior knowledge of this project. In both studies, for
each test sample, each participant was shown a page of the input
data and the corresponding colorization results of comparison ap-
proaches in random order. In the faithfulness study, the participants
were required to pick out the color image which best meets the
colorization requirement in the given language expression. In the
effectiveness study, the participants were required to pick out the
most visually pleasing color image. For foreground colorization task,
questionnaires were generated on 72 sets of randomly selected test
samples covering 24 categories. For background colorization task,
40 randomly selected sets of test samples were used for the study.

For foreground colorization task, 18 valid study results were
completed for both sets of the experiments (i.e., FG-MRU-RMI vs.
LBIE, and MRU vs. ResNet vs. Pix2Pix) in both the faithfulness and
effectiveness studies. (18 + 18) X 72 = 2,592 trials were collected
in total for either of the faithfulness and effectiveness studies. For
background colorization task, 26, 22, and 20 valid study results were
returned for the three sets of experiments, respectively: BG-RES-
RMI-SEG vs. LBIE, MRU vs. ResNet vs. Pix2Pix, and the ablation
study. In total, (26 + 22 + 20) X 40 = 2, 720 trials were collected for
either of the faithfulness and effectiveness studies.

Results. The statistic results of the collected study data are pre-
sented in Fig. 16 and Fig. 17. We can see that the proposed FG-
MRU-RMI clearly outperforms LBIE in foreground colorization task
when measuring in both faithfulness and effectiveness. Relatively,
BG-RES-RMI-SEG has more comparative advantages over LBIE in
background colorization task. This is mainly because both the im-
age encoder and decoder (49 layers) in BG-RES-RMI-SEG are much
deeper than those in by LBIE (15 layers), which enables BG-RES-RMI-
SEG to be more capable of dealing with relatively large-size images
(768 x 768 for background colorization in our implementation). A
similar reason can also be used to explain the backbone comparison
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Fig. 16. Statistic results for faithfulness study.
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Fig. 17. Statistic results for effectiveness study.

results in the background colorization task, where ResNet (49-layer)
beats MRU (13 layers), which in turn beats Pix2Pix (5 layers).

By comparing the relative advantages of each backbone alter-
native on the foreground and background colorization tasks, we
conclude that MRU is more suitable for foreground colorization
(inferring color images from sketches) while ResNet is more suitable
for background colorization (inferring color images from blank re-
gions). By comparing the statistic results of w/o SEG and with FG,
i.e., 15.88% vs. 30.13% (faithfulness) and 18.13% vs. 27.00% (effective-
ness), we can see that the system benefits more from the explicit
segmentation branch than from the w/o-FG strategy.

8.3 Overall Performance

User Study Settings. We conducted two additional studies to eval-
uate the overall performance of the proposed system: targeted col-
orization where participants were required to colorize a sketch into
target color images as closely as possible, and un-targeted coloriza-
tion where participants were allowed to colorize a sketch with free
instructions. Before the experiment we selected 20 scene sketches
with reasonable instance segmentation results from the test set of
SketchyScene [Zou et al. 2018] and generated a target color im-
age for each sketch in the same way as that we prepared for the
BACKGROUND dataset. In this way, we obtained 20 pairs of sketch
and target color image for the study of targeted colorization, and
20 sketches for the study of un-targeted colorization. Afterwards,
we invited six participants to provide the input expressions for
the un-targeted colorization study first and then for the targeted
colorization study. These participants included a 10-year-old boy
in primary school, a 14-year-old boy in high school, two female
and one male graduate students aged 21 to 23, and a 30-year-old
female working in a company. The 10-year-old boy and one of the
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female graduate students are native English speakers, while the
others are not. Each of the 20 examples was randomly assigned to 2
participants to conduct the studies.

In the un-targeted colorization study, before the description data
collection we only showed the participants Fig. 1 for illustrating
the workflow of our system together with the color types of the
foreground and background objects in the training data as the tu-
torial. By contrast, in the targeted colorization study, before the
data collection, we additionally showed them the category names
of all the foreground and background objects, together with Fig. 7
and Fig. 8 for showing the examples of sentence patterns in the
training data. The participants were required to provide complete
instructions to colorize the entire sketch for each example in both
studies.

User Study Results. For each study, we collected instructions for
2% 20 = 40 sketches in total, each with around 10 instructions. With
these input data, we generated 40 X 10 = 400 sets of progressive re-
sults. For each instruction, our system returned a colorization result
within 2 seconds. Below we briefly present some of the results (for
more results, please see Section 3 in the supplementary material).

In the un-targeted colorization study, since the participants were
only shown a limited number of sentence patterns in Fig. 1 and were
not informed of the object category names in the training data, we
collected a large proportion of instructions which were beyond the
coverage of the training data (see Fig. 18) in terms of “wild” sentence
structure (e.g., the most similar training instruction to “yellow road”
(A4) is “the road is yellow”), language grammar (e.g., “the clouds
are are in dark gray” (B4)), and unsupported words (e.g., the verb
“colorize” in “colorize the bus in purple” (B5) does not exist in the
training data). However, our system still produces reasonable results
with these kinds of input data. Fig. 18 (Bottom) also shows there is
no need to colorize the foreground before the background (B3), and
our system supports re-colorization (B5).

In the targeted colorization study, even though we showed the
participants some sentence patterns in our training dataset, we still
found diverse expressions in their instructions. In Fig. 19, we show
the results of two representative sets of input data from four users.
These instructions include some significantly different expressions
or slightly different color goals towards the same target. Take the left
case for an example: user A described the objects briefly while user B
preferred to describe in more detail, e.g., “with orange flame” for the
“sun”. Moreover, for the “house”, the sentence structures between
user A and B were quite different. Despite the expression diversity,
our system still produces color images close to the target cartoon for
the two users. In the right example, we can see that different users
assigned different but visually close colors probably due to their
individual color cognition, e.g., “light brown hair”/“purple pants”
from user C and “dark brown hair”/“black pants” from user D. Our
system produces results that are slightly different but still consistent
with the target images to some extent.

Generalization. To further evaluate the generalization ability and
robustness of our system, we also applied our system to a number
of wild sketch images from the Internet. These test sketch images
included three types of styles: cartoon-style drawing, artist free-
hand drawing, and anime line art. In addition, we also evaluated our
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“the two trees are light
green”
(A2)

“the house is pink”

(A1)

“all the trees are dark
green”
(B2)

“the bus is yellow with
blue windows”
(B1)

“all the clouds are light
blue”

(A3)

“color the sky in blue
and the ground in green”
(83)

“yellow road”
“color the grasses in dark green”

(A4)

“the clouds are are in dark gray”
“let the rabbit be in pink”
(B4)

Fig. 18. Two representative interactive colorization results in the un-targeted colorization study.

Target cartoon Output from user A Output from user B

! “The sun is yellow”

“The sun is yellow with orange
flame”

“All chickens are yellow with red

i “All the chickens are yellow”
H | crest and yellow feet”

| “The house is red with dark
i brown roof and light blue

' windows”

“The walls of the house are
red”
Scene sketch

Input from user A Input from user B

brown and the roof of the house is |

Target cartoon

Scene sketch

Output from user C

| “All the trees are dark green”

i “The left person has light brown i
! hair and is in light blue dress” |

! “The right person has black hair :
{and is in red shirt with purple |

Input from user C

“the sky is brown and
the ground is black”
(A5)

“dark green grasses”
“colorize the bus in purple”
(85)

Output from user D

! “The leaves on trees are dark
| green and the trunks of trees
U are dark brown”

i “The person on the left with dark :
\ brown hair wears light blue
| clothes”

! “The person on the right with
3 black hair wears red t-shirt,
i black trousers and gre

Input from user D

Fig. 19. Representative results from the targeted colorization study. For better visualization, we highlight the different expressions towards the same target in

red and different color goals in blue.

system on some non-artist freehand sketches in the Sketchy [Sangk-
loy et al. 2016] (instance-level) and Photo-Sketching [Li et al. 2019]
(scene-level) datasets, which are more “sketchy” than the three styles
just mentioned. We manually constructed the colorization instruc-
tions for these wild sketches. Fig. 20 and Fig. 21 illustrate the results,
from which we can see that our system is also capable of generating
desirable results.

9 CONCLUSION AND DISCUSSIONS

Empowering machines with the ability to intelligently understand
both natural language expressions and scene sketches with various
styles and to perform colorization tasks is a challenging but useful
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task. This paper for the first time presents a language-based sys-
tem for interactive colorization of scene sketches. This is enabled
by multiple carefully designed deep networks for instance match-
ing, foreground colorization, and background colorization, as well
as dedicated large-scale datasets for network training. Our com-
prehensive experiments have demonstrated the effectiveness and
robustness of the presented system. We are interested in combining
a language-based interface and other interfaces (e.g., scribble-based)
for a more powerful multimodal colorization system. Our current
system can still be improved in multiple aspects, as detailed below:

Lack of Language Generality for Instance Matching. One major
limitation of our system is the lack of generality of the language
component and the compatibility with human’s linguistic habits. In



(a)

“the person in the
middle has dark
brown hair and
is in pink shirt
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“the rabbit on the
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“the person on
the right has
red hair and is
in orange shirt
with cyan skirt”

“the person on
the left has
light brown
hair and is in
red shirt with
dark gray
pants”

“the sky is pink
and the ground
is yellow”

“the person on
the right has
red hair and is
in light brown
shirt with

purple pants”

“the sky is blue
and the ground (d)
is green”

Fig. 20. Generalization study on the wild sketch data , including: (a) & (b) cartoon-style drawings, (c) artist freehand drawing and (d) anime line art.

“the dog is dark brown”

“all the trees are
dark green”

“the dog on the right

“the car is yellow with blue window” is dark brown”

“the person is in light
brown shirt with red
pants”

“the sky is blue and

“the house is blue with gray roof” the ground is green

Fig. 21. Generalization study on non-artist freehand sketches. The instance-
level sketches are from the Sketchy [Sangkloy et al. 2016] dataset and the
scene-level one is from the Photo-Sketching [Li et al. 2019] dataset.

our targeted colorization study (Section 8.3), most participants said
that based on their linguistic habits, they preferred to describe mul-
tiple objects even of different categories every time, rather than one
by one as required in the study, like “The sun is orange and the clouds
are light blue”. As shown in Fig. 10 and the analysis in Section 7.3,
it is still difficult for our system to fully understand this kind of
sophisticated expressions with multiple categories. Moreover, some
participants also pointed out that, for example, in the right case
of Fig. 19, after describing “The left person has ...”, they tended to
describe the right person as “The other person ...” without adding
any additional location information. Our current system can only
handle individual language instructions separately and does not
have the capability of understanding the contextual information.
The main reason for this limitation is that our MATCHING dataset
was built automatically without any manual annotation. Conse-
quently, the scope of handling language expressions is limited to
variances within the dataset. One feasible solution is to distill and
augment the dataset with crowd workers. For example, further re-
search may invite users to polish the automatically synthesized text.

Moreover, the dataset can be made more compatible with human’s
linguistic habits by asking users to combine the simple automatically
synthesized sentences into more sophisticated expressions.

Lack of Language Generality for Colorization. Another limitation
is that our system still cannot handle cases where the input instruc-
tion includes arbitrary part-level information (e.g., “the wheels” of
the car) or arbitrary colors (e.g., “blonde hair”). In the future, the
part-level information can be annotated from the WordNet [Miller
1995] while the color information can be computed as a linear mix-
ture of several known colors. Our current dataset was designed
with a narrow scope of objects and colors to reduce the manual
effort of collecting the training and testing data, whereas it results
in low variances within the dataset. In the future, we aim to facilitate
additional networks to recognize and segment the parts and learn
reasonable blended colors for the un-annotated parts.

Colorization Artifacts. In general, there still exist some artifacts
in our results, such as uncolored pixels (e.g., between the boy’s legs
in Fig. 19) and aliasing artifact (region around the hair in Fig. 20 (d)).
These artifacts are mainly caused by the limitation of the data. Our
colorization scheme requires region-based segmentation informa-
tion while the SketchyScene dataset only provides the stroke-based
segmentation information. We applied a simple poly2mask tool to
post-process the segmented strokes to obtain region-based segmen-
tation masks for foreground objects, which may cause inaccurate
region-based segmentation results (e.g., the blank region between
the boy’s legs in Fig. 19 was treated as a part of the boy). To deal with
this problem, we plan to augment the SketchyScene dataset with
region-based segmentation annotations, which may empower the
foreground segmentation network to be a fully end-to-end model
for producing region-based segmentation masks.
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