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Figure 1: Workflow of InstructPipe. First, users describe their desired pipeline in natural language and designate it with a
language, image, or multi-modal tag. InstructPipe then feeds user instructions into a node selector to identify a relevant set
of nodes. Subsequently, both the instructions and the relevant nodes with their description are input into a code writer to
produce pseudocode. Finally, a code interpreter parses the pseudocode, rectifies errors, and compiles a JSON-formatted pipeline,
allowing users to refine and interact with it further within Visual Blocks’s node-graph editor.

Abstract
Visual programming has the potential of providing novice program-
mers with a low-code experience to build customized processing
pipelines. Existing systems typically require users to build pipelines
from scratch, implying that novice users are expected to set up and
link appropriate nodes from a blank workspace. In this paper, we
introduce InstructPipe, an AI assistant for prototyping machine
learning (ML) pipelines with text instructions. We contribute two
large language model (LLM) modules and a code interpreter as
part of our framework. The LLM modules generate pseudocode
for a target pipeline, and the interpreter renders the pipeline in
the node-graph editor for further human-AI collaboration. Both
technical and user evaluation (N=16) shows that InstructPipe
empowers users to streamline their ML pipeline workflow, reduce
their learning curve, and leverage open-ended commands to spark
innovative ideas.
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1 Introduction
A visual programming interface provides users with a node-graph
editor to program through interaction with visual elements. As
opposed to writing code in a code editor, the node graph allows
users to design pipelines by configuring nodes and connecting them
with edges in a visual workspace. This alternative user interface
approach often accelerates experimentation and exploration in
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the prototyping phases of creative applications, and can make
advanced technology more accessible to beginners. Advances
in machine learning (ML) further stimulate growing interest in
visual programming. Open-source ML hubs (e.g., TF-Hub [1],
PyTorch-Hub [57], and Hugging Face [83]) contribute large
numbers of encapsulated modules that accelerate AI project
development and experimentation, and such libraries provide
important resources for an ML-based visual programming platform.
Recent advancements in large language models (LLMs) [3, 8, 77]
and findings on Chain-of-Thought [81] have further stimulated
community-wide interest in visual programming [4, 19, 84, 86],
suggesting further potential in the interactive exploration of AI
chains.

Despite the development of visual programming platforms in
various domains, we observed that existing systems share one
similar characteristic: users usually initiate a creative process in the
workspace “from scratch”. This implies that users need to 1) select
nodes, 2) ideate the pipeline structure, and finally, 3) connect nodes
within a completely empty workspace. As was also highlighted in
existing literature in programming tools [92, 95], such processes
can easily overwhelm users, especially those who are unfamiliar
with a particular visual programming platform. Providing pipeline
templates may reduce on-boarding efforts [9, 21], but the templates
inherently lack flexibility and are not easily adaptable to users’
specific needs. Similar issues also arise when users write programs
using text-based editors (there exist many built-in functions in
a particular programming language and multiple variables in a
program), but advances in LLM assistants show that such challenges
can be effectively reduced. For example, GitHubCopilot [23] enables
users to generate code by simply describing users’ requirements in
natural language. Even though the generated code is not absolutely
correct, the AI assistance usually finishes a large portion of the task,
and programmers may only need to make a few edits to achieve a
correct result [12, 38]. To this end, we raise the following question
that motivates our work: How can we build visual programming
assistants to accelerate the design and prototyping of ML pipelines?

This paper introduces InstructPipe, a visual programming AI
assistant that enables ML pipeline generation and design through
natural language instructions. InstructPipe facilitates node connec-
tion and selection, allowing users to focus on more creative tasks
like parameter tuning and interactive analysis within the visual
programming workspace. We focus our AI assistant exploration
on ML-based pipelines, and therefore implemented InstructPipe as
an extension to Visual Blocks [18], a visual programming system
for prototyping ML pipelines. One major technical challenge in
implementing InstructPipe lies in the lack of visual programming
data, making it impractical to finetune a dedicated code-LLM similar
to how developers build text-editor-based copilots [12, 23, 38]. We
addressed this issue by decomposing the generation process into
three steps (Figure 1). InstructPipe’s first LLM module scopes the
potentially useful nodes, while the second LLM module generates
pseudocode for a pipeline. InstructPipe then parses the pseudocode
and renders the pipeline in the node-graph editor to facilitate
further user interaction. Our technical evaluation suggests that
InstructPipe reduces the necessary user interactions by 81.1% when
users select and connect nodes, compared to building them from
scratch. This can potentially streamline the development process,

and allows users to focus on more novice-friendly interactions like
parameter-tuning and human-in-the-loop verification. Our system
evaluation with 16 participants demonstrated that InstructPipe
significantly reduced users’ workload in their creative process.
Qualitative results further reveal that InstructPipe effectively
supports novices’ on-boarding experience of visual programming
systems and allows them to easily prototype concepts for various
purposes. In our experiments, we also observed new challenges
caused by human cognitive characteristics, and proposed future
technical directions towards open-ended AI prototyping assistants.

In summary, we contribute:
(1) InstructPipe, a visual programming AI assistant that enables

users to generate ML pipelines from human instructions by
automating node selection and connection,

(2) System design and technical development of InstructPipe.
The system consists of two LLM modules and a code
interpreter, which generate the specification for the visual
programming pipeline, compile the code, and render the
pipeline in an interactive node-graph editor,

(3) Technical and user evaluations that characterize the effec-
tiveness of InstructPipe, and contribute findings that reveal
new challenges for the HCI community.

2 Related Work
2.1 Visual Programming
A computer program defines the operation of computer systems.
However, “the program given to a computer for solving a problem
need not be in a written format” [73]. This future-looking statement,
dating back to the 1960s, inspired several generations of researchers
to design and build visual programming systems.

Today, visual programming systems (e.g., LabView [39], Unity
Graph Editor [76], PromptChainer [84], ComfyUI [13] and Visual
Blocks [18]) typically feature a node graph editor, providing
users with a visual workspace to “write” their program using
“building blocks” [28, 68, 89]. Recent work further explored the
application of visual programming in education [9, 35, 40], XR
creativity support [88, 91, 93], and robotics [14, 30, 31]. For
example, Zhang et al. [93] connected the visual programming
tool to the concept of teaching by demonstration [44, 49, 99],
allowing users to rapidly customize AR effects in video creation.
FlowMatic [91] extended traditional visual programming interfaces
into 3D virtual environments, providing users with immersive
authoring experiences.

Advancements in AI have introduced many repositories of
advanced ML models [33, 66], and an increasing number of
researchers are exploring AI chains [41, 86]. This progress has
motivated HCI researchers to design and build a range of visual
programming interfaces to support the AI development process [13,
43, 84]. For example, ChainForge is a web-based platform for
developers to explore various LLM-related configuration and
designs in a wide range of applications [4]. Visual Blocks enables
creation and interaction of advanced ML pipelines that can leverage
state-of-the-art computer vision and computer graphics models in
the browser [18].

This work contributes the technical system, implementation and
evaluation of a novel AI assistant that enables the use of text-based

2



InstructPipe CHI ’25, April 26-May 1, 2025, Yokohama, Japan

instructions in visual programming of ML pipelines. Compared to
typical workflows in which people manually build their pipelines,
InstructPipe has the potential to accelerate ML pipeline prototyping
in visual programming.

2.2 Interactive Systems with LLMs
The advances in LLMs bring many research directions for
HCI researchers. Researchers have started designing new LLM
interfaces, to advance beyond the currently dominant chatbot
interface (e.g., OpenAI ChatGPT, Google Gemini). For example,
Graphologue [36] augmented LLM responses with interactive
diagrams that visualize response texts in a structured format.
Sensecape [71] provides users with a workspace to explore long
LLM responses in a hierarchical structure.

Many HCI researchers integrated LLMs in conventional inter-
active systems and demonstrated that such enhanced machine
intelligence can provide new user experiences [20, 46, 56, 60, 78].
This research principle is widely applied in many downstream
HCI applications, including visualization [65, 80], explainable
AI [79, 85], and social science [45, 55]. For example, Chen et al. [11]
utilized LLMs to bridge low-level sensor informationwith high-level
human requests. Experiments showed that such connection allows
users to “construct their personalized contexts [for an intelligent
system] more quickly, accurately, and naturally”. To interface human
intention with machine operations, researchers typically utilized
LLMs by following the ReAct (reasoning and acting) paradigm [87].
For example, Park et al. [55] simulated human behaviors in an
artificial social system by leveraging LLMs as intelligent agents
that perceive the environment, plan their behaviors, and act in
the environment. Automated Visualization (AutoViz) researchers
employ LLMs for data analysis and reasoning for presenting the
visualization [48, 50, 63]. For example, LIDA features four modules
in the visualization pipeline to 1) summarize a structured dataset,
2) explore the user’s goal, 3) generate code for visualization, and 4)
render visualization [16]. ChartGPT further constructs a dedicated
dataset for chart visualization, and finetunes an LLM for fully
automating the data visualization pipeline [74].

InstructPipe extends the application of ReAct-like LLM frame-
works [16, 74] to visual programming and demonstrates its
effectiveness to support rapid prototyping with lower user
workload. Additionally, introducing visual programming to the
ReAct framework showcases an interface solution for human-AI
collaboration. That being said, our work values partially correct AI
generation, though the previous literature considers it as a complete
generation failure [16, 24]. We leverage visual programming as a
platform to integrate partially complete AI generations with human
interactions, enabling even novices to intuitively collaborate with
AI in their creative processes.

3 InstructPipe
InstructPipe is an AI assistant that enables users to generate a visual
programming pipeline by simply providing text-based instructions.
We implemented InstructPipe on Visual Blocks [18, 98], a visual
programming system for prototyping ML pipelines.

3.1 User Workflow
To generate a pipeline, users first click the “InstructPipe” button
in the top-right corner of the interface (Figure 2b). The system
then activates a simple dialog (Figure 2a) in which users provide
a description and a tag for their desired pipeline. The tag
can be “language”, “visual”, or “multimodal”, and helps guide
the pipeline generation. After users click the “Submit” button,
InstructPipe generates a visual pipeline in the node-graph editor.
More specifically, InstructPipe generates a directed acyclic graph
(DAG) of a visual programming pipeline. This implies that it uses
default node parameters (e.g., the “temperature” or “max_tokens”
value of an LLM node). Therefore, after the generation, the user
needs to 1) finish the graphic structure if necessary, and 2) perform
parameter tuning as well as human-in-the-loop evaluation of the
pipeline quality interactively in the visual programming platform.
As wewill show in our evaluation, this new human-AI collaboration
approach reduces users’ workload on the technical portion of the
visual programming tasks (selecting and connecting nodes) and
thus provides a more novice-friendly experience for technical visual
programming platforms.

3.2 Primitive Nodes
InstructPipe supports 27 primitive nodes in Visual Blocks. We
achieved this node library of InstructPipe by filtering out nodes
without explicit definition of their functions1. For example, ‘TFLite
model runner’ is an implicitly defined node: the user needs to input
a tensorflow hub link to define its functionality. As we mentioned
previously, InstructPipe focuses on generating a DAG and leaves
the parameter-tuning task to users. Adding such implicit nodes
without a clear definition of the functionality can easily confuse
our AI assistant in the generation process, and thus, we decide to
exclude these nodes in the node library of InstructPipe.

The 27 nodes in our library include three input nodes, four output
nodes and 20 processor nodes. The following shows an example
node in each category, and we leave the full node library description
in Appendix A:

• “live camera” (an input node): Capture video stream
through your device camera

• “markdown viewer” (an output node): Render Markdown
strings into stylized HTML.

• “imagen” (a processor node): Generate an image based on
a text prompt.

We distributed 20 processor nodes based on the data type of
its I/O edges and visualized it in Figure 3. For example. “Google
Web Search” takes “Texts” information as input and output new
“Texts”, and “OCR” takes an image (vision-based information)
as input and output “Texts”. “Features” in Figure 3 indicates a
wide range of intermediate data formats used in ML pipelines,
including segmentation masks, pose landmarks, URLs and etc. As
shown in the matrix, InstructPipe contains a wide range of nodes
that support the creation of complex ML pipelines. Compared to
related work that automates ad hoc ML inferences in specific use
scenarios [24, 72], InstructPipe makes one more step towards the
open-ended assistants with a more diverse set of primitive nodes.
1Note that Visual Blocks is a system that is actively being updated, and there are more
nodes now.
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(a) InstructPipe’s instruction dialog.

(b) InstructPipe’s visual programming interface.
Figure 2: The user interface of InstructPipe. The user can first click on the “InstructPipe” button on the top-right corner of the
interface in (b). A dialog will appear, and the user can input the instruction and select a category tag. InstructPipe then renders
a pipeline on (b), in which the user can interactively explore and revise.
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Figure 3: The distribution of 20 primitive processor nodes
supported by InstructPipe. Note that “PaLM” represents two
nodes in InstructPipe, i.e., a text generation model and a chat
model of PaLM [3].

Further extending our node library can effectively empower the
capability of our AI assistant, which we leave as critical future
work. In the current implementation of InstructPipe, we focus on
demonstrating its capability based on our focused node library and
explore what new experiences this AI assistant can bring to our
users.

4 Pipeline Generation from Instructions
InstructPipe leverages LLMs to generate visual programming
pipelines from text instructions. There are two prevailing ap-
proaches for LLM-customization, fine-tuning [46, 62], and few-shot
prompting [24, 55]. Fine-tuning would require a substantial volume
of annotated data, with pairs of pipelines and prompts, and it is hard
to achieve for a specific visual programming platform. Additionally,
a growing list of nodes would consistently require 1) new data
annotation and 2) retraining the model, making this approach less
sustainable. In comparison, few-shot prompting is a more practical
approach for prototyping an interaction concept to understand
the new experience it would bring to the community [24, 81, 87].
One major challenge of applying LLMs in visual programming
AI assistants lies in designing efficient prompts that fit within a
reasonable number of tokens. Even thoughwe focus our exploration
on 27 nodes, the node configuration file alone includes 8200 tokens.
Further formulating pipeline examples as in-context few-shot
examples would result in a combinatorial explosion, causing an
overwhelming number of tokens in the prompt.

To this end, we implement InstructPipe with a two-stage
LLM refinement prompting strategy, followed by a pseudocode
interpretation step to render a pipeline. Figure 1 illustrates
the high-level workflow of the InstructPipe implementation.
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(a) Pipeline.

(b) Pseudocode.
Figure 4: A pair example of pipeline and pseudocode. In the
first line of code under “processor”, pali_1_out, pali_1, pali
and image=input_image_1, prompt=input_text_1 represents
output variable id, node id, node type, and node arguments,
respectively.

InstructPipe leverages two LLM modules (highlighted in red); a
Node Selector (section 4.2), and a Code Writer (section 4.3). Given a
user instruction and a pipeline tag, we first devise the Node Selector
to identify a list of potential nodes that would be used according to
the instruction. In theNode Selector, we prompt the LLMwith a very
brief description of each node, aiming to filter out unrelated nodes
for a target pipeline. The selected nodes and the original user input
(the prompt and the tag) are then fed into the Code Writer, which
generates pseudocode for the desired pipeline. In Code Writer, we
provide the LLM with detailed descriptions and examples of each
selected node to ensure the LLM has extensive context for each
candidate node. Finally, we employ a Code Interpreter to parse the
pseudocode and render a visual programming pipeline for the user
to interact with.

4.1 Pipeline Representation
The Visual Blocks system takes JSON-format data as input and
renders a directed acyclic graph (DAG) in the visual programming
workspace. Therefore, the ultimate goal of InstructPipe is to
generate the JSON file; however, directly generating the long
JSON file is computationally expensive. For example, the JSON
file for rendering the pipeline in Figure 4a contains approximately
2.8k tokens. To address this issue, we utilize the pseudocode
representation of a DAG, and define this token-efficient data format
as the output data format of our LLM module. Figure 4b shows
the corresponding pseudocode representation of the pipeline in
Figure 4a, and the it only contains 123 tokens. The pseudocode
representation simply stores the DAG information of a visual

programming pipeline without other information such as node
parameters (e.g., the “max_tokens” configuration of an LLMmodule)
and the layouts of the nodes. This indicates that InstructPipe leaves
the task of node parameter tuning to the user, which we believe
is a more novice-friendly task, and focuses on providing technical
assistance on selecting and connecting nodes.

In the following content, we provide detailed explanation on
the pseudocode design and implementation. As we mentioned
above, Figure 4 provides an example of a pipeline (Figure 4a) and
its corresponding pseudocode (Figure 4b). The syntax design is
inspired by TypeScript, and the overall structure is inspired by how
academic papers present pseudocode [94] in an algorithm block. In
Figure 4b, we highlight the first line under the processor module
(i.e., the operation of the PaLI node) in different colors, representing
four different components in the programming language. “pali_1”
is the unique node ID. The green symbol after the colon, i.e., “pali”,
specifies the node type. In this example, node ID “𝑝𝑎𝑙𝑖_1” is a
“pali” node. The arguments in brackets, i.e., “image=input_image_1,
prompt=input_text_1”, specifies the input variables (or input edges
in the graph) of this node. “pali_1_out” represents the output
variable name. For input nodes, the output variable name is the
same as the node id, so we do not annotate the output variable
with a separate name (e.g., “input_image_1: input_image()” instead
of “input_image_1 = input_image_1: input_image()”). Note that
InstructPipe generates texts (i.e., the node parameter) in the “input
text” node. Therefore, the argument in “text=“caption this image in
detail”” does not indicate that the “input_text” node accepts input
edges, but accepts the node parameter input as a special case.

4.2 Node Selector
Node Selector filters out unrelated nodes by providing the LLM
with a short description of each node. Figure 5 shows the prompt
we use in Node Selector. Followed by a general task description
and guidelines, we list all node types with a short description
that explains the function of each. Several nodes come with
recommendation(s) when the users interact with Visual Blocks,
and we also include such node recommendations in the prompt.
The main intuition of this prompt design is based on how existing
open-source libraries (e.g., Numpy [25]) present a high-level
overview of all functions2. The documentation typically presents
a list of supported functions (in each category), followed by a
short description so that developers can quickly find their desired
functions. At the end of the prompt, we provide a list of Q&As as
few-shot examples to support the LLM to learn and adapt to the
context of the task.

4.3 Code Writer
With a pool of selected nodes, the Code Writer module can write
pipeline rendering pseudocode. Figure 6 shows the structure of
the prompt utilized in this LLM module. Similar to section 4.2, the
prompt starts with a general introduction and several guidelines.
The major difference in the prompt design in this stage lies in
the granularity of each node introduction. We provide a detailed
configuration for each selected node with additional information,

2See an example in the following link: https://numpy.org/doc/1.25/reference/routines.
array-manipulation.html
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Figure 5: The prompt structure for theNode Selectionmodule.
Each node description is formated as "{node types}: {short
descriptions of the nodes}; {recommended node(s)}". The node
recommendation is optional.

including 1) input data types, 2) output data types, and 3) an
example, represented in pseudocode, for how this node connects
to other nodes. We include a detailed explanation of the full
node configuration in Section B.1.2. Similar to the previous LLM
module (section 4.2), the prompt design here is also inspired by
the documentation of existing software libraries. Specifically, we
gain inspiration from low-level function-specific documentation3,
which typically includes 1) a detailed description, 2) data types in
the input/output, followed by 3) one or more examples of a few
lines of code for how developers can use the function.

The prompt also includes a Q&A list as few-shot examples.
However, providing few-shot examples in this stage is non-trivial.
The reason lies in the dynamics of the node selection pool. A
combination of all the nodes causes many possible options, and
it is impossible to design a dedicated list of few-shot examples in
each possible case. Therefore, we only created an example list for
each pipeline tag (i.e., “language”, “visual”, and “multimodal”) and
intended to utilize these few-shot pipelines to teach LLMs example
use cases in each category. This implies that in-context pipelines
may include nodes that were not selected for the prompt. This can
potentially lead to LLM hallucinations [32], i.e., utilizing the nodes
that do not exist in our node library. We mitigated this issue by
adding specific prompts that explicitly show a list of supported
nodes (i.e., the contents start with “the following is a full list of
3See an example in numpy.shape: https://numpy.org/doc/1.25/reference/generated/
numpy.shape.html#numpy-shape

You are a programmer responsible for helping the user design an AI 
pipeline.
Upon receiving a concise description from the user about the 
desired functionality of the pipeline, you should generate the whole 
pipeline using pseudocode.

Guidelines:
1. Respond solely in pseudocode, without additional commentary.
2. Utilize ONLY the nodes listed below; introducing new nodes is not 
permitted.
3. Ensure there's a minimum of one line in each pseudocode 
category: 'input', 'output', and 'processor'.

Below are the nodes you can incorporate into the pipeline:
… // detailed node configurations for each selected node

The following is a full list of nodes you may also use but those not 
included above are not recommended:
… // a full list of node types supported by LLM2Pipeline

Examples:
Q: 
{'description': 'generate a photo and validate whether it is real or 
generated.', 'tag': 'multimodal'}
A: 
… // pipeline pseudocode 

… // more in-context examples

Figure 6: The prompt structure for the Code Writer module.
Detailed node configurations, see the appendix for examples,
are listed in the highlighted region.

...” in Figure 6). However, LLM hallucination is a community-wide
challenge, and we also find that our approach cannot eliminate
this issue in visual programming. Therefore, InstructPipe conducts
a sanity check for the Code Writer outputs and directly disposes
of the line of pseudocode with such hallucinated nodes. This can
ensure that the generated code is in a valid data format for rendering
the pipeline in Visual Blocks.

4.4 Code Interpreter
After our LLM modules generate the pseudocode, InstructPipe
employs a code interpreter to parse the generated pseudocode and
compile a JSON-formatted pipeline with an automatic layout. Since
we incorporated standard approaches to achieving such conversion
from the pseudocode to the JSON file, which we do not intend
to claim as our main contributions, we briefly summarize our
implementation into the following three steps for simplicity and
elaborate low-level implementation details at Appendix B.2:

(1) Lexical Analysis: InstructPipe first tokenizes each line of
the pseudocode into output variable id, node id, node type,
and node arguments (section 4.1).

(2) Graph Generation with Default Node Parameters: We
generated a DAG based on the tokenized results and applied
predefined default node parameters in each generated node.
For example, by default, the temperature and the max output
tokens for the PaLM node are set to 0.5 and 256, respectively.
If users are not satisfied with the default values, they can
interactively adjust the parameters in the node-graph editor.

(3) Layout Optimation: When pseudocode is converted into a
JSON file, default node parameters will cause sub-optimal
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visual effects (Figure 11a). InstructPipe conducts a layout
optimization process using the breadth-first search (BFS) al-
gorithm, which re-arranges the layout for better presentation
of the pipeline (Figure 11b).

5 Technical Evaluation
InstructPipe contributes a framework for generating specifications
for visual programming pipelines based on text prompts from users.
To characterize the system’s performance, we designed a technical
evaluation to assess the accuracy of the generated graphs for a
variety of prompts.

5.1 Data Collection
To compute the accuracy of our generated pipelines, we need to
collect a corpus with pairs of instructions and their corresponding
ground-truth pipelines. Therefore, we organized a two-day hybrid
workshop with 23 participants, aiming to collect real pipelines
that Visual Blocks users would build for their creative usage.
The 23 participants (F: 6; M: 17) are composed of five software
engineers, four research scientists, four students, three designers,
two project managers, and two engineeringmanagers. Six attendees
claimed that they had prior experience in using Visual Blocks. As
this was a data collection study rather than a user study, where
each participant here served as a data creator and annotator, we
did not restrict participation to individuals who self-identified as
novices. The workshop began with a 15-minute Visual Blocks
tutorial walking the participants through the nodes and the
pipeline-building process. After the tutorial, attendees created
pipelines independently. Once they finished creating the pipelines,
participants were required to caption their pipelines and upload
them. We utilized this corpus of data pairs (caption/pipeline) as the
data set for the technical evaluation.

The workshop was an open-ended creation process in which
participants were free to use any node available in Visual Blocks
with more than the 27 nodes covered by InstructPipe. The
InstructPipe feature was not available in the workshop. After the
workshop, we post-processed our collected data and achieved
48 pipelines (23 language pipelines, seven visual pipelines and
18 multi-modal pipelines) for our technical evaluations. The
post-processing procedure details are presented in Appendix C.1.

5.2 Metric: The Number of User Interactions
To quantify the efficacy of InstructPipe based on our goal of
accelerating and streamlining pipeline creation, we defined the
metric Number of User Interactions as follows:

The Number of User Interactions is defined as the minimal
number of user interactions needed to complete the pipeline
from a generated pipeline.
This definition is mainly inspired by Graph Edit Distance

(GED) in graph theory [22]. Note that there are countless ways
to modify a generated pipeline toward a complete pipeline in
practice. Nevertheless, theminimal number of user interactions
is deterministic, and this is an objective metric that can fairly
estimate the amount of effort users need to spend to achieve their
goal. A pipeline is considered complete when it satisfies the given
instruction. We calculate the number of interactions across two

Table 1: The ratio of human interactions in the technical eval-
uation. Results are reported as mean ± standard deviation.

Overall Language Visual Multimodal
18.9 ± 20.3% 17.4 ± 20.6% 17.6 ± 23.7% 20.8 ± 16.0%

types of events: 1) adding/deleting a node, and 2) adding/deleting
an edge between nodes. In the technical evaluation, we report the
average ratio of user interactions required to complete a pipeline
“from our generated pipeline” compared to “from scratch” as our
target metric. For example, if it takes 3 interactions to complete
a pipeline from our generated results and takes 10 interactions
to complete from scratch, then the ratio of interactions is 30%.
Appendix C.2 contains further discussion of this metric.

5.3 Experiment Setups and Results
We ran our generation algorithm on the pipeline captions six times
(three times for each caption × two captions for each pipeline), and
computed an averaged performance among the six trials for each
pipeline.

Table 1 summarizes the results of the technical evaluation.
Compared to building a pipeline from scratch, InstructPipe allows
the user to complete a pipeline with 18.9% of the user interactions,
demonstrating the potential of InstructPipe to require more than
5X fewer interactions. Seven generated pipelines directly satisfied
with instructions without user interactions in all six trials, and 38
generated pipelines completed at least once in any of the six trials.

6 User Evaluation
While the technical evaluation demonstrates the accuracy of
InstructPipe among various real pipelines created by participants,
it is still unclear what is the actual user experience when real users
go through the entire system workflow. Therefore, we conducted
an in-person user study of InstructPipe with another group of
participants, aiming to provide more insights into our system
performance as well as explore new user experiences brought by
InstructPipe. The study recruitment was in accordance with the
ethics board of Google. We obtained participant consent before the
study began.

6.1 Study Design
In the user evaluation, we aimed to investigate how the interface
condition (with InstructPipe and without InstructPipe; the inde-
pendent variable) affects the user experience and behaviors (the
dependent variable). We will refer to these two interface conditions
as “InstructPipe” and “Visual Blocks” in the following content.
Figure 7 visualizes the complete study flow. In each condition,
participants completed the two pipelines with counterbalance
(referred to as Task 1 and Task 2 in Figure 7).

We carefully designed the experiment to create a fair study that
could be completed with reasonable effort. In the following content,
we elaborate on how we made two important decisions related to
the study’s rigor:

6.1.1 Two controlled pipelines with full counterbalancing.
Our user evaluation focuses on two controlled pipelines with full
counterbalancing. While we acknowledge that more pipelines
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Figure 7: A flow diagram of the user study. After a training
session, participants completed the two tasks in each con-
dition in the sequence determined by the counterbalancing
protocol.

(e.g., four, six, or more) could enhance generalizability, such
designs would also inevitably increase the size of the required
user groups, even without fully counterbalancing. For example,
fully counterbalancing four controlled pipelines requires 12×
more participants. Partially counterbalancing with four pipelines
using the Latin Square design still requires us to double the
number of participants. Additionally, novice participants are likely
to progressively gain experiences within the study, and such
learning effects will weaken the design of partial counterbalancing.
We believe that two pipelines with full counterbalancing are a
reasonable experiment setup in this work, and future work could
consider extending and scaling up these experiments.

6.1.2 Pipeline selection. Given the fixed number of pipelines we
can evaluate with users and the potential bias introduced by few-
shot prompts [96], it is important how we select the two pipelines
for user study. There are two critical factors that we considered:
representativeness and diversity. Representativeness implies that
the selected pipelines should represent the average performance of
InstructPipe. Diversity suggests that the selected pipelines should
provide various experiences to simulate the actual use scenarios
in which the performance of InstructPipe may vary. Following
this guideline, we selected four candidates, and the final decision
was made after a pilot study with one participant to test the level
of pipeline difficulty. The two resulting pipelines are composed
of eight nodes with seven edges, and six nodes with six edges,
respectively. Using the instructions from two authors, the averaged
ratio of human interactions in these two pipelines are 27.8% and
5.2%, respectively. See Section D.2 for more detail on the pipelines.

6.2 Procedure
Each study session takes 55 - 65 minutes in total. The study started
with 10-15 minutes of hands-on training for both conditions. The
training included 1) all the Visual Blocks interactions needed to
complete the subsequent steps of the experiment, and 2) all the
nodes that participants will need to use for pipeline creation in

the main session. Participants were also encouraged to experiment
with building a pipeline independently, and to ask questions.

After the training, participants progressed to a formal study
session where they were asked to build and complete pipelines
under the given conditions. We verbally described the pipelines to
participants as below, and participants could not see our scripts:

• Text-based pipeline: get the latest news about New York
using Google Search and compile a high-level summary of
one of the results.

• Real-time multimodal pipeline: create a virtual sun-
glasses try-on experience using your web camera.

A pipeline is considered complete when the aforementioned
functions run in the user’s visual programming workspace. For
example, we consider the “real-time multi-model pipeline” as
complete when the pipeline registers the sunglasses on the user’s
face, with real-time tracking and following of the head movement.

During the task, participants were allowed to consult with us
for technical help. If participants were unable to make progress,
we provided hints. We provided many more hints in the baseline
condition, and we made this decision to ensure every novice-level
participant can finish their tasks within a reasonable amount of
time. Appendix D.3 contains more details and discussions of the
assistance we provided in the study. As an optional extension to
the study, eight participants were offered an open-ended pipeline
creation, where participants prototyped their own ideas using
InstructPipe. This optional section was offered based on the
progress of the participant in the previous sections, and time
constraints so that the study duration was controlled within the
time we guaranteed in our recruitment process.

After conducting all pipeline-condition combinations, par-
ticipants answered open-ended questions in a semi-structured
interview. The interview script is available in the appendix D.1.
Participants provided their general impression of each condition,
listed pros and cons, identified potential future use cases, and
critiqued the user interface for future improvements.We transcribed
the interviews and conducted the open coding analysis on the
qualitative data [69, 70]. More specifically, we categorized the
quotes based on our observations and then refined the code for
presentation.

6.3 Participants
We recruited 16 participants from our internal participant pool,
which is specifically designed for UX research within our institution.
Importantly, none of the participants was involved in our project,
and the authors in charge of the study did not personally know any
of the participants. We screened participants on their self-reported
programming experience and machine learning skills. All of the
16 selected participants rated their “Programming Experience” and
“’Machine Learning Skill’ as “Intermediate” or below (See Table 3
for a full breakdown). We intentionally recruited novice users, as
we envision them as intended users of InstructPipe.

6.4 Metrics
In addition to the qualitative data from the interview, we measured
the following quantitative data.
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Table 2: Task completion time and the number of human
interactions in the user study (N=16). We use ∗ ∗ ∗ to denote
𝑝 < .001.

System Time (secs) # Interactions
Median IQR p Median IQR p

InstructPipe 203.5 156.25 *** 5.0 4.25 ***Visual Blocks 304.5 124.25 16.0 6.0

6.4.1 Task Completion Time. Back-end logs were used to collect
timestamps for starting and ending events. Then, the completion
time for each condition was calculated per task for each participant.

6.4.2 The Number of User Interactions. We used the number of
user interactions (introduced in section 5.2) to measure the user’s
objective workload. Unlike the results in section 5.3, we report an
absolute value here because all the pipelines are controlled in the
system evaluation.

6.4.3 Perceived Workload. The raw task load index (Raw-TLX)
questionnaire was used to measure participant’s perceived work-
load [26]. This questionnaire was a subset of the NASA-TLX (part
I). Participants filled out the questionnaire after each condition
(InstructPipe or Visual Blocks).

6.5 Results
6.5.1 InstructPipe Reduces Users’ Workload. Table 2 shows
the results of two objective metrics measured in the study. The
Wilcoxon signed ranks test found significant differences on both
scales (𝑝 < .001).

Figure 8 further visualizes the results of users’ perceived
workload in six sub-scales. The Wilcoxon signed ranks test
revealed significant differences on five sub-scales, all except “Mental
Demand” (see section 7.2 for more explanations and discussion).
Furthermore, the test indicates that all participants unanimously
considered that InstructPipe provides lower or equal workload
on the subscales of “Physical Demand”, “Temporal Demand”,
“Performance” and “Effort” (𝑊 = 0). These quantitative results, with
both objective and subjective metrics, demonstrate the potential
for InstructPipe to dramatically reduce users’ workload during the
pipeline creation process.

Users’ qualitative feedback is also aligned with our quantitative
results. Participants complimented that InstructPipe is “helpful”
[P16] and “obviously easier (to use) than [Visual Blocks]” [P1]. P11
and P6 further elaborated how InstructPipe enhances the user
experience when the user builds a visual programming pipeline:
“I feel like I can talk in natural language, and it (InstructPipe)
can write the code for me.” [P11]

6.5.2 On-boarding Support of Visual Programming. P1, P5,
and P9 explicitly mentioned that there is a “learning curve” in
visual programming systems, which validates our statements and
motivation in section 1.
“There is a learning curve to it (using the visual programming
system) for sure, because you have to, like, read each node
carefully.” [P1]
P1’s commentmatches our observation of participants’ behaviors

during the study. In the Visual Blocks condition, we observed

that people were more easily stuck in their creative purposes,
which required our support. Typical support included 1) guiding
participants if they went too far away from the correct pipeline, and
2) reminding them of an important node for the pipeline, although
we introduced all the necessary nodes in our training session.

To this end, participants commented that InstructPipe is a good
onboarding tool in visual programming systems, especially for
non-experts, to get familiarized with the system by having a ready
solution.

“[InstructPipe] lets you know these nodes exist [when the pipeline
appears after the instruction]. It’s like a super speedy tutorial.”
[P7]

“If you don’t have experience in visual programming, you will
appreciate [InstructPipe] much more ... With [InstructPipe], the
structure is there, and I feel less worried about making mistakes.
It’s, like, giving you examples. It’s easier than starting from
scratch.” [P5]

Anecdotally, three participants asked for InstructPipe during the
Visual Blocks condition.

6.5.3 Integration into the Existing Workflow. InstructPipe is
a feature available in Visual Blocks. In the interviews, participants
particularly expressed their strong appreciation of this design as
an AI assistant that enhances, instead of completely replacing, the
existing user workflow:

“[The pipeline generated by [InstructPipe] could be pretty close
to what I want ... Or maybe sometimes not, but that’s okay. I
got most of the blocks there, and then it’s up to me to figure out
how to connect them.” [P6]

While most participants, like P6, appreciated the integration
of the AI assistant into the standard visual programming work-
flow, P15 expressed a concern about this approach. In visual
programming, users typically rely on visual thinking to construct
pipelines, but the new prompt-based method introduces a shift
toward text-based reasoning. This blend of cognitive processes
could potentially increase users’ mental workload:

“ [the participant is talking about s/he wants to fix an
unsuccessful generation by changing the prompt instead of
performing visual programming here] ... because I just spent
so much time figuring out what the prompt should be. That’s
kind of like already where my brain was and I knew that
something was wrong there (the prompt), but I would have
to switch over to the other mode (visual programming) of
figuring out what was wrong in the pipeline ... [this is very
overwhelming]” [P15]

6.5.4 Use Scenarios: Accessible ML Prototyping and Edu-
cation. In the open-ended session, we observed that participants
could efficiently utilize InstructPipe to prototype a pipeline for
various daily life or business purposes. For example, P14 tried
InstructPipe with “summarize real estate price increase in San Diego
California over 2023”. Compared to using LLM chatbots, InstructPipe
helps the user quickly build amore explainable pipeline inwhich the
user can track (or modify) the information resources. P4 prototyped
an interactive VQA app by “Describe the product in the camera”.
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Figure 8: Raw-TLX results. The statistic significance is annotated with ∗, ∗∗, or ∗∗∗ (representing 𝑝<.05, 𝑝<.01, and 𝑝<.001,
respectively).

P13 further shared his thoughts on how this rapid and accessible
prototyping experience can support future business:

“It (InstructPipe) is going to facilitate prototype building for PMs
(Product Managers) ... I have lots of ideas, but my challenge
is how to translate an idea into the technical world and see a
prototype. I think that this app expedites me in that process a
lot.” [P13]

Another emerging theme was regarding educating kids on
programming:

“With [InstructPipe], I don’t need to teach them (kids) to code
for them to build something ... Some kids like to code, some kids
like to create stuff but don’t want to be bored with learning the
syntax of coding ... Using [InstructPipe], I can see kids can build,
like, customized chat-bots or interactive Wikipedia.” [P13]

6.5.5 Limitations and Future Directions. Across the study
sessions, we consistently observed a specific user behavior pattern:
participants typically paused their pace when a generated pipeline
appeared in the workspace. At these times, some participants used
soliloquy, as in saying “Let me see”, while others kept a focused stare
on the workspace. These human behaviors suggest that InstructPipe
led participants to engage in deeper, contemplative thought.

The observation suggests that participants needed time to
perceive the generated pipelines as they appeared in the workspace.
Such sense-making processes bring new challenges to the creative
process:

“[Using InstructPipe] is a little mentally demanding ... I have to
debug ... If it doesn’t help (generating an almost 100% correct
pipeline), I have to go through all the nodes ... I don’t like
debugging.” [P13]

Additionally, we observed that several participants spent more
time crafting their prompts than others. P15 spent the most time
writing the prompt. The following comments provide insights into
how the prompting process caused extra mental workload:

“I’m a relatively visual thinker ... Getting the prompt right
requires me to think in a way that is a lot more like precise
and like getting it figured out without working it out live ...
[When writing prompts, ] you’re just putting them (every detail
in a whole pipeline) all out [in one short prompt]” [P15]

In addition to the lack of the original visual thinking experience
in visual programming, P13 also warned that such simplification of
the creative process into prompting experience may sacrifice users’
hands-on experiences:

“I’m very hands-on with techs. I would like to understand what’s
going on [rather than prompting LLMs to generate everything
for me]. I want to like think for myself and then compile all the
information myself.” [P13]

7 Discussion
7.1 Human-AI Collaboration in Prototyping

Open-ended ML Pipelines
Our technical evaluation (section 5.3) shows that InstructPipe
reduces the number of user interactions to 18.9 % (±20.3%) There
are two key implications from the results:

• InstructPipe automates most pipeline components with a
single prompt.

• InstructPipe is not able to automate all the pipeline creation
processes.

Such takeaways differ from early-stage findings that show LLMs can
achieve full automation of ML inference [24, 72]. The main reason
is that existing work built their ad hoc solutions for target use
scenarios, respectively. In contrast, InstructPipe covers a larger
range of ML models (section 3.2) and aims for an open-ended
use case. Our results show that LLMs (we used GPT-3.5-turbo in
the study) still fail to write robust code with prompt engineering
techniques. This aligns with the latest research findings that show
that even the latest LLMs still fail to formulate a whole working
pipeline [62, 82].

While LLMs cannot generate a fully executable pipeline, our
work shows that AI can successfully render a certain portion
of a pipeline for users. Both technical and user evaluations
highlight the important values here. We believe such values provide
useful takeaways for HCI researchers to explore more human-AI
collaboration approaches and designs in visual programming.
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7.2 Three Attributes to Mental Workload
Results in section 6.5.1 show that InstructPipe failed to significantly
reduce novice users’ mental demand. We summarized its major
causes into three aspects.

7.2.1 Instruction. P15’s comment in section 6.5.5 summarizes the
first aspect that causes mental burden. Although the “instruction-to-
pipeline” process is fast and seems effortless, the process of framing
a prompt is one factor that may overwhelm users, especially those
who are more accustomed to visual thinking. InstructPipe requires
its users to 1) be clear about the problem they want to solve, and 2)
be able to clearly articulate the desired pipeline. Such requirements
cause a mental burden to the user [6]. We believe that our results
can reinforce the existing knowledge on how non-experts may not
prompt LLMs well [51, 90] in the visual programming domain.

7.2.2 Perception. The integration of LLM support into the
visual programming interface enables a “multimodal programming”
experience [17], in which, users can program through both
verbal and visual approaches. However, this flexibility increases
perceptual burden as users switch between visual and text-based
thinking [53]. Interestingly, our results seemingly contradict
psychological findings based on the Dual Coding Theory (DCT) that
show a combination of verbal and visual information actually helps
humans’ memory process4 [52, 54]. Therefore, we believe that the
mental workload stems not from dislike of multimodal workspaces,
but from the lack of a transparent interface that aligns users’ mental
models with AI reasoning both verbally and visually. That being
said, a next-generation copilot should visualize a pipeline (i.e., visual
info) while the user is prompting the system (i.e., verbal info),
constituting and interfacing multimodal processing in humans’
brains.

7.2.3 Debugging. When a rendered pipeline does not match
users’ expectations, users need to debug (see P13’s comment
section 6.5.5). Specifically, users need to “invest extra effort to review
and understand the generated content” [95] and then solve the issues
caused by the AI assistant. In essence, debugging is a professional
programming skill, which understandably can be mentally over-
whelming for beginner-level users. While InstructPipe visualizes
generated code in the visual programming platform, our results
suggest that future systems should provide more guidance for
beginners to better proceed with their programming tasks.

7.3 Instructing LLMs Poses Challenges for Both
Novices and, Potentially, Experts

As we discussed above, non-experts found it challenging to instruct
LLM. More interestingly, we found that even we, the inventors
of InstructPipe, failed to write optimal instructions. For instance,
the two captions of Figure 13c are “Describe the image and turn
it into a cat image” and “Edit an image by updating the image
caption”. Neither caption explicitly describes the detailed pipeline
flow clearly, and therefore, all the six evaluation trials (section 5)
were incomplete (see Figure 9a for one example). The average ratio
of user interactions is 45.8%, more than twice the average value

4For example, people feel it easier to remember a new word if they learn the word
using a vocabulary card with a figure that explains the texts.

for our multimodal pipelines (20.8%). To further understand the
cause of the failure, another author improved the instruction into
“Caption a tiger image using VQA, modify the character in the caption
into a cat using LLM, and finally generate a cat image based on the
updated caption”. The resulting pipeline is significantly improved
but still not perfect (Figure 9b). The user only needs to turn “Imagen”
into another mode so that it also accepts the input “image” node.
Revisiting the improved instruction, we instructed InstructPipe
with “generate a cat image based on THE updated caption”, which
actually missed the input image.

The important takeaway is while natural languages are proven
to be one promising communication media that connects humans
and AI systems [11, 78], instructions may not be the best format to
facilitate such connection. We believe the reason is that instructions
are still not intuitive to humans: AI typically requires flawless and
unambiguous instructions, while humans tend to express their
intentions using ambiguous natural languages in conversations.
We encourage future work to investigate alternative interaction
mediums beyond instructions to further enhance user experience
in human-AI collaboration.

8 Limitations and Future Work
8.1 Assisting Humans to Prompt AI Copilot in

Visual Programming
InstructPipe introduces a novel user interaction technique for visual
programming, along with its set of challenges – prompting AI is not
easy [90]. While the latest research has explored prompt writing
assistants [7, 42, 47], creating such assistants in visual programming
poses unique challenges, as discussed in section 7.2, and requires
further dedicated investigation. Despite these challenges, the visual
programming workspace offers a unique opportunity – it provides
an interactive and visual medium for delivering AI-generated
information. For example, a prompt writing assistant could provide
“a pipeline preview” in real time via a lightweight LLM. Visualizing
estimated outcomes, such as unexpected pipeline results (as
illustrated in Figure 9a), highlights the potential of these tools
to guide users in refining their instructions effectively.

8.2 Node Parameter Tuning
InstructPipe focuses on generating the graph structure in the
pipeline (section 4.1), and InstructPipe is not able to generate node
parameters. The latest research in AI agents shows great potential
for distributing a systematic task among multiple LLMs and letting
them solve the problem collaboratively [37]. We encourage future
work to extend such distributed AI agent approaches to generate
suitable node parameters to further reduce users’ workload in
tuning them.

8.3 A Larger and Dynamic Node Library
InstructPipe is an AI assistant prototype on a small-scale library
with 27 nodes. Similar to other tool-calling LLM systems [15, 64],
InstructPipe cannot generate any out-of-scope node, and thus, there
is a limited scope of pipelines that InstructPipe can generate. Future
work should investigate a scale-up problem by creating an assistant
that supports large-scale nodes [61]. What new technical challenge
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(a) (b)
Figure 9: A comparison of InstructPipe generated by two instructions: (a) “Edit an image by updating the image caption” ; (b)
“Caption a tiger image using VQA, modify the character in the caption into a cat using LLM, and finally generate a cat image
based on the updated caption”. See Figure 13c for the complete pipeline.

will emerge?Will such a large-scale library provide practical human
value? If yes, what are the concrete new user experience it opens
up in visual programming?

Additionally, future work should explore a dynamic solution
of the node library, in which an AI assistant can define necessary
nodes in visual programming on the fly. HuggingGPT [66] is a
pioneering project that shares a similar vision as this goal, but
existing investigations show that the accuracy of such open-ended
generation is still unsatisfactory [58, 62]. How can we design an
interface to bridge such imperfect AI and human users in visual
programming copilot? What will be the interaction paradigm in an
interactive system with a dynamic node library?

8.4 Refining System Component Design
InstructPipe provides a system contribution, and we verified
the usefulness of InstructPipe via two evaluations that assess
InstructPipe as a whole system. One important future direction
would be to verify (or even challenge) each technical component of
our system, as elaborated below:

Pseudocode. We designed the pseudocode order based on how
algorithm papers present their algorithm blocks. Is this design the
best approach among all the possible candidates? If not, how can
we further improve the design of pseudocode language?

Prompt Design. We leveraged the in-context learning capability
of LLMs in our prompt design. Prior work shows that few-shot
examples cause bias effects in practice [97], and thus, we encourage
future work to mitigate this bias by collecting a large dataset and
finetuning LLM on the dataset.

Divide-and-conquer at Scale. We adopt the strategy of
divide-and-conquer [67] with a two-stage LLM pipeline. Despite
its effectiveness with a small node library and simple graphs, its
effectiveness is unknown when generating complex graphs. Ex-
ploring agent-based approaches [29, 34] with Retrieval Augmented
Generation (RAG) would be a promising future direction to manage
complex graph generation in a divide-and-conquer manner [67].
We encourage future work to contribute high-quality datasets as
well as an interactive LLM system with RAG that provides users
with better experiences from AI agents.

8.5 Evaluation Metrics and Long-term
Evaluation

In the technical evaluation, we assessed the performance of AI
assistants based on the number of user interactions. Existing related
metrics, predominantly from the code synthesis literature [2, 27],
largely focuses on two categories: correctness-based metrics [5, 10]
that rely on test case verification, and similarity-based metrics [75].
Very little research falls outside these two categories [59]. Our metric
incorporates human factors by objectively estimating user effort
through graph theory, addressing a gap in the visual programming
literature where human-centric considerations are crucial. While
our work advances metric development in this domain, further
formal research is essential to establish comprehensive standards
for visual programming evaluation.

In the user evaluation, we conducted a lab study to understand
the user experience of InstructPipe. As future work, we plan to
conduct longer-term studies and gather more realistic insights than
those we obtained from the lab study. This is critical for us to
understand the long-term usefulness of our assistant for beginners,
as well as collect feedback to inform our system design.

8.6 Responsible AI
InstructPipe currently cannot detect harmful data or misuse of AI.
We believe such safety features are crucial, especially in the context
of the potential for future dynamic node libraries, which would
greatly enhance the generalizability of ML pipeline prototyping
capability. Future work must study effective methods to eliminate
potential harmful uses when AI assistants become increasingly
open-ended.

9 Conclusion
This paper introduces InstructPipe, an AI assistant that empowers
users to accelerate their design of ML visual programming pipelines
using text instructions. We design and implement InstructPipe by
decomposing the task into threemodules: a node selectionmodule, a
codewriter, and a code compiler. Results in our technical and system
evaluations suggest that InstructPipe provides users’ satisfactory
“on-boarding” experience of visual programming systems and
allows them to rapidly prototype an idea, potentially with more
than 5X fewer interactions. We further discuss the issues we
observed concerning LLMs in visual programming, related to
both human factors and technical implementations. We hope
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that InstructPipe will inspire the community to continue work
in accelerated human-AI collaboration for increased expressivity
and creativity, for machine learning pipelines, and beyond.
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Appendix
A A Full List of 27 Nodes in InstructPipe
The following content shows 27 nodes InstructPipe covers in the
generation process and their corresponding short description used
in the Node Selector (section 4.2):

A.1 Input Nodes
(1) live_camera: Capture video stream through your device

camera.
(2) input_image: Select images to use as input to your pipeline.

You can also upload your own images.
(3) input_text: Add text to use as input to your pipeline.

A.2 Output Nodes
(1) image_viewer: View images.
(2) threed_photo: Create a 3D photo effect from depthmap

tensors.
(3) markdown_viewer: RenderMarkdown strings into stylized

HTML.
(4) html_viewer: Show HTML content with styles

A.3 Processor Nodes
(1) google_search: Use Google to search the web that returns a

list of URLs based on a given keyword; usually selected with
string_picker.

(2) body_segmentation: Segment out people in images; usually
selected with mask_visualizer.

(3) tensor_to_depthmap: Display tensor data as a depth map.
(4) portrait_depth: Generate a 3D depth map for an image;

usually selected with tensor_to_depthmap, threed_photo.
(5) face_landmark: Detect faces in images. Each face contains

468 keypoints; usually selected with landmark_visualizer,
virtual_sticker.

(6) pose_landmark: Generate body positional mappings for
people detected in images; usually selected with land-
mark_visualizer.

(7) image_processor: Process an image (crop, resize, shear,
rotate, change brightness or contrast, add blur or noise).

(8) text_processor: Reformat and combine multiple text inputs.
(9) mask_visualizer: Visualize masks.
(10) string_picker: Select one string from a list of strings; usually

used with google_search.
(11) image_mixer: Combine images and text into one output

image. Requires two image inputs.
(12) virtual_sticker: Use face landmarks data to overlay virtual

stickers on images.
(13) palm_textgen: Generate Text using a large language model.
(14) keywords_to_image: Search for images by keywords.
(15) url_to_html: Crawl the website by a given URL.
(16) image_to_text: Extract text from an image using OCR

service.
(17) pali: Answer questions about an image using a vision-

language model.
(18) palm_model: Generate text using a large language model

based on prompt and context.

{
    "nodeSpecId": "body_segmentation",
    "description": "Segment out people in images.",
    "category": "processor",
    "inputSpecs": {
        "image": {
            "type": "image"
        }
    },
    "outputSpecs": {
        "segmentationResult": {
            "type": "masks",
            "recommendedNodes": [
                "mask_visualizer"
            ]
        }
    },
    "examples": [
        "live_camera_xhjtec: 
live_camera();\nbody_segmentation_xctd1p_out = 
body_segmentation_xctd1p: 
body_segmentation(image=live_camera_xhjtec);\nmask_visualizer_frjz
ga_out = mask_visualizer_frjzga: 
mask_visualizer(image=live_camera_xhjtec, 
segmentationResult=body_segmentation_xctd1p_out);\n"
    ]
}

(a) Body segmentation

{
  "nodeSpecId": "pali",
  "description": "Answer questions about an image using a 
vision-language model.",
  "category": "processor",
  "inputSpecs": {
    "image": {
      "type": "image"
    },
    "prompt": {
      "type": "string"
    }
  },
  "outputSpecs": {
    "answer": {
      "type": "string"
    }
  },
  "examples": [
    "input_image_f1ohfa: input_image();\ninput_text_04ejnm: 
input_text(text=\"What is the person in the image 
doing?\");\npali_2pzuwn_out = pali_2pzuwn: 
pali(image=input_image_f1ohfa, 
prompt=input_text_04ejnm);\nmarkdown_viewer_6wqe86: 
markdown_viewer(markdownString=pali_2pzuwn_out);\n"
  ]
}

(b) PaLI
Figure 10: Examples of node configuration used in Code
Writer. The configuration is structured in a JSON format.

(19) imagen: Generate an image based on a text prompt.
(20) input_sheet: Read string data from Google Sheets.
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B System Implementation
B.1 System Prompts Used in LLM Modules
Here we provide more details about the prompts we utilized
in InstructPipe. The original txt files are also attached in the
supplementary zip file.

B.1.1 Node Selector. Please see our supplementary file
(node_select.txt) for the full prompt we use in this stage.

B.1.2 Code Writer. The prompt in Code Writer is dynamic, which
is dependent on the nodes chosen in Node Selector. Therefore,
we cannot provide all the possible prompts in the supplementary
materials. Here, wewill focus on providing examples of two detailed
node configurations utilized in InstructPipe. Figure 6 shows the
structure of the prompt utilized in this LLM stage. Figure 10 provides
two examples of node configurations (i.e., “Body segmentation” and
“PaLI”) that InstructPipe may chose into the highlighted line(s).
Each configuration includes keys of “nodeSpecId” (i.e., node types),
“description”, “category” and “examples”. For those nodes that
support input and output edges, “inputSpecs” and “outputSpecs”
specify the sockets and their corresponding valid data types.
For example, the output socket name of “Body segmentation” is
“segmentationResult”, and its data type is “masks”. Some nodes (e.g.,
“Body segmentation”) include recommended node(s) (e.g., “Mask
visualizer” for “Body segmentation”), and our configuration also
contains such information in the dictionary.

B.2 Code Interpreter
Here, we provide more low-level implementation details on Code
Interpreter. The Code Interpreter parses generated pseudocode
into a visual programming pipeline for visualization at the Visual
Blocks workspace. Figure 12 shows the data type definition of
graphs, nodes, and edges in the system. The example JSON file to
be parsed into the Typescript interface is available at the Visual
Blocks website5. Our code defines a visual programming pipeline
into an array of serialized nodes, 𝐺 (𝑁 ). When the user adds a
new node to a pipeline, it adds a new “SerializedNode”, containing
the edge definition between this new node and other nodes in the
current workspace, to the current “SerialedGraph”. This mechanism
ensures that nodes can be incrementally added in the order they
appear in the pseudocode order while maintaining the integrity of
the graph by clearly defining dependencies and data flow between
nodes. Algorithm 1 further shows how InstructPipe parses code
and incrementally adds nodes to formulate a final serialized graph.

C Technical Evaluation
C.1 Data Post-Processing
After the workshops, one author carefully examined each collected
pipeline and found several critical issues in the raw data:

• Incomplete pipelines. There exist pipelines uploaded by
the participants that were incomplete.

• Isolated graphs. There exist pipelines that include at least
one isolated subgraph. The isolated subgraph, as opposed to

5https://visualblocks.withgoogle.com/. The JSON file is available for data structure
exploration by 1) entering an example project and 2) clicking on the “Export” button
on the top-right corner.

Algorithm 1: Code Interpreter
1 Input: 𝐶 : the generated texts (i.e., pseudocode) in the string

format.
2 Output: 𝐺 (𝑁 ): a visual programming pipeline

(𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝐺𝑟𝑎𝑝ℎ) that mainly stores an array of
𝑆𝑒𝑖𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑜𝑑𝑒 (Figure 12).

3 Variables: 𝑇 : a dictionary of parsed tokens that contains
𝑜𝑢𝑡𝑝𝑢𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒_𝑖𝑑 , 𝑛𝑜𝑑𝑒_𝑖𝑑 , 𝑛𝑜𝑑𝑒_𝑡𝑦𝑝𝑒 ,
𝑛𝑜𝑑𝑒_𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠; 𝑒: the incoming edges of a new node, in
the format of 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒; 𝑛: a new node in
the format of 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑜𝑑𝑒 .

4 𝐺 : 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑜𝑑𝑒 [] = [] // Initialize 𝐺 as an

empty array

5 𝑙𝑖𝑛𝑒𝑠 = 𝑙𝑖𝑛𝑒_𝑝𝑎𝑟𝑠𝑒𝑟 (𝐶) // Parse 𝐶 into lines of code

with no pseudocode order changed.

6 for 𝑙𝑖𝑛𝑒 in 𝑙𝑖𝑛𝑒𝑠 do
/* Example: */
/* 𝑝𝑎𝑙𝑖_1_𝑜𝑢𝑡 = 𝑝𝑎𝑙𝑖_1 : 𝑝𝑎𝑙𝑖 (𝑖𝑚𝑎𝑔𝑒 =

𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒_1, 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡_1) */
/* –> */
/* ‘𝑝𝑎𝑙𝑖_1_𝑜𝑢𝑡’, ‘𝑝𝑎𝑙𝑖_1’, ‘𝑝𝑎𝑙𝑖’ and

[‘𝑖𝑚𝑎𝑔𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒_1’, ‘𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡_1’]
*/

7 𝑇 = 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (𝑙𝑖𝑛𝑒)

8 𝑒 : 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑒𝑑𝑔𝑒𝑠 (𝑇 )
// create incoming edges for the new node

9 𝑛 : 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑁𝑜𝑑𝑒 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 (𝑇, 𝑒) // create a
new SerializedNode with the incomingEdges
and the parsed dictionary

10 𝐺.𝑎𝑑𝑑_𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑𝑛𝑜𝑑𝑒 (𝑛) // add the new

SerializedNode to the graph

11 𝐺 = 𝑜𝑝𝑡𝑖𝑚_𝑙𝑎𝑦𝑜𝑢𝑡 (𝐺) // Perform the UI layout

optimization, as shown in Figure 11

12 return 𝐺

the main graph, is defined as a graph (or a node) that has no
connection to the main graph in the pipeline that provides
themain functionality of the pipeline (e.g., the “Image viewer”
node on the bottom-left corner of Figure 11b). We observed
that some participants typically would like to explore the
system by working on a separate sub-space. While we
acknowledge its usefulness, leaving such “redundant” graphs
in the raw data for the evaluation would cause issues when
we calculate the number of user interactions (i.e., the metric
used in the evaluation that will be defined in the next
subsection).

• Low-quality captions. While we explicitly required the
participants to write descriptive captions, we found some
captions written by the participants were either empty
or low-quality (e.g., “newsletter”, “image editing” and
“[participant name]-demo” ).
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(a) Before layout optimization. (b) After layout optimization.
Figure 11: A comparison of the same generated pipeline before and after layout optimization.

/** A serialized graph. */
export declare interface SerializedGraph {
nodes: SerializedNode[];

/** other properties */
}

/** A serialized node. */
export declare interface SerializedNode {

/** The id of the node, e.g., pali_1. */
id: string;

/** The node spec id, e.g., pali. */
nodeSpecId: string;

/**
* Serialized incoming edges that
* connect to this node.
*/
incomingEdges?: {

[inputId: string]: SerializedIncomingEdge[]
};

/** other properties */
}

/** A serialized incoming edge. */
export declare interface SerializedIncomingEdge {
/** The id of the source node. */
sourceNodeId: string;

/** The id of the output in the source node. */
outputId: string;

}

Figure 12: The definition of a graph, a node and an edge
in the system using the Typescript language. Only the core
properties of graphic structure definition are presented in
this figure.

The observation motivated us to post-process the raw data
to present more rigorous evaluation results. We first removed
incomplete pipelines and the isolated graphs in each pipeline (if
there are any).

To further enhance the annotation quality, two authors
individually annotated the caption of each pipeline separately
by referring to the original captions and pipelines authored by
the participants. It is important to note that we finished the
workshop and the data annotation task before we completed the
system implementation. The two authors had no experience using
InstructPipe before completing the annotation. We believed this
process could effectively enhance the quality of the captions while
maintaining the fairness of the technical evaluation.

As we clarified in section 5.1, the workshop is designed to be
an open-ended creation process. This indicates that the dataset
inevitably includes out-of-scope nodes like “custom scripts” (in
which the participants write code to process the input data and
return custom outputs; see Figure 13b for an example) and “TFLite
model runner” (which call a custom TensorFlow model with a URL
input of the model in the TF-Hub).

We removed the pipelines that contain node(s) out of our focus
27 nodes, and selected all the remaining pipelines as our final
evaluation set. We argue that this post-processing is critical for
reporting a fair accuracy value since InstructPipe can only generate
pipelines based on its known node library. The final 48 pipelines
(out of 64 pipelines) are comprised of 23 language pipelines, seven
visual pipelines, and 18 multi-modal pipelines. Figure 13 shows
three pipelines created by the participants. Figure 13b is an example
of the pipelines that include out-of-scope nodes, and therefore are
not included in the final 48 pipelines. In the technical evaluation,
we ran our generation algorithm on the pipeline captions six times
(three times for each caption × two captions from two authors for
each pipeline) and evaluated the generation results using the metric
that will be introduced below.

C.2 Evaluation Metric: The Number of User
Interactions

Our definition of the number of user interactions has two important
implications. First, a complete pipeline after user interaction does
not need to be the same as the corresponding pipeline in the dataset.
As long as it fulfills the task described in the caption, we consider
the pipeline complete. Second, our definition does not consider
interactions of modifying the node parameters, e.g., typing in a text
box or selecting a value in a drop-down box. We argue that such
interactions are highly node-dependent and are hard to quantify
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(a) Search news from Google, summarize it, and then conduct a fact check. Input: a keyword for Google Search; Output: a summarization of the
news and a fact-check result.

(b) Generating an emoji from a photo. Input: a photo uploaded by the user; Output: an emoji generated from the photo.

(c) Turning a tiger into a cat. Input: an image of a tiger; Output: an image of a cat.
Figure 13: Example pipelines participants built in the workshops.
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objectively. More importantly, as we explain in section 4.1, the
generation of node parameters is out of the scope of this work.

In the technical evaluation with various pipelines, it is unfair
to report an averaged absolute value of user interactions because
the complexity of the pipelines varies dramatically. For instance,
the user may need to make three edits based on a generated result
to complete a large pipeline that requires 20 edits from scratch.
In another pipeline, the user also needs to do three edits starting
from the generated result, but the whole pipeline only takes three
edits to finish. Averaging these absolute values does not provide
reasonable insights into how accurate the generation is. Therefore,
we reported an averaged ratio of user interactions required to
complete a pipeline “from our generated pipeline” to that “from
scratch” as our target metric in the technical evaluation.

D User Evaluation
D.1 Semi-structured Interview Script
[ Introduction ] ( Start timing! 60 min max. )
Hello, my name is X.
First, I would like to thank you for your participation and

completing the consent form. Today, you will be a participant in a
user study regarding machine learning and visual programming.
Your data will be kept anonymous. Additionally, as a researcher I
have no position on this topic and ask that you be as open, honest,
and detailed in your answers as possible. Do you have any questions
before we begin?

Basically, visual programming borrows the metaphor of block
building and allows novice users to develop digital functionalities
without writing codes.

[Show Visual Blocks]
Here, each block is called a node, and each node takes in specific

inputs, then returns the desired outputs. What you can do is to
connect a series of nodes together as a pipeline to achieve a high-
level goal.

We are going to walk you through our Visual Blocks system and
ask you to actually use Visual Blocks in two conditions to create a
few applications.

[ Tutorial ]( Start timing! 10 min max. )
Before we get started, let us do a tutorial of our system.
[ Study and TLX ]( Start timing! about 30 min )
[Leverage the counter-balanced sheet and give user a task]
[Think aloud. Have a short discussion with the user. What’s the

user’s plan to achieve this given functionality?]
[ Interview ]( Start timing! about 15 min )
1. What’s your impression of Visual Blocks / InstructPipe

[counterbalanced]? Do you need many edits / operations to make
it work?

2. Are there any pipelines you come up with in work scenarios /
casual scenarios?

3. What works with InstructPipe? In what specific scenarios will
InstructPipe be very helpful?

4. What does not work with InstructPipe? Would you give me
an example?

5. Do you have any suggestions to improve the design of both
systems?

6. Which kinds of technologies would be interesting to add?

7. What applications do you want to start with InstructPipe?
And what applications do you want start without it?

That’s all for our user study. Thank you for your participation
and we will compensate for your time.

D.2 User Study Pipelines
Figure 14 and Figure 15 visualize two pipelines we required the
participants to complete in our user study. Figure 15 is a multimodal
pipeline that allows participants to interact with AR effects in
real time. Our technical evaluation shows that InstructPipe can
generate this pipeline accurately: the averaged ratio of human
interactions = 5.2%. Figure 15 is a text-based pipeline that provides
participants with a summary of the news searched from Google.
The technical evaluation reveals that InstructPipe cannot generate
this pipeline accurately without further human interaction, and the
average ratio of additional human interactions is 27.8%. While the
generated diagram (with error) is not deterministic, we observed
that InstructPipe commonly generates the pipeline in Figure 14
without “URL to HTML” or “PaLM Text Generator” nodes. The
error implies that the LLM may misinterpret 1) the data from the
“selected text” port of the “String picker” node is the texts on the
web instead of the web URL and 2) that “Text processor” has the
LLM capability to process the texts instead of simply combining
two texts.

Note that even though InstructPipe may be able to complete the
pipeline structure in Figure 15 from users’ instruction, we observed
that participants still need to fine-tune their keywords to get an
ideal pair of sunglasses. Additionally, the default anchor value is
“Face top”, so participants need to use the drop-down menu on the
“Virtual sticker” node to change the value to “Eyes”. This further
motivates us to use the metric of “Time” in addition to the number
of user interactions in our study. Our demo video also covers the
workflows of these two pipelines.

D.3 Assistant Provided to the Participants in the
User Evaluation

In the user evaluation, our goal is to make the interface condition
(either InstructPipe or Visual Blocks) as the only independent
variable that changes our dependent variables (section 5.2). Similar
to user evaluations of other early-stage HCI research, we had to
improvise for lacking system affordances. As an example, we would
include helpmenus and error recoverymodels in the future versions
of our system, but at this early stage, we relied on in-person help
to nudge and assist our user study participants. We took actions
(i.e., assistants) in the user evaluation to ensure the study is under
an appropriate amount of control as well as maintain the fairness
of our study.

Here, we elaborate on two examples of assistants we provided
in the user study.

In the InstructPipe condition, one participant started their
“instructions” by dragging a text box into the visual programming
workspace and began typing. When noticing this issue, we kindly
asked the participant whether s/he wanted to write instructions
or build a pipeline from scratch. S/he then noticed this issue and
clicked on the “InstructPipe” button to write prompts. Note that
we explicitly taught every participant how to use InstructPipe
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Table 3: Participant demographics for the user study, showing various demographic characteristics and skills relevant to
InstructPipe.

ID Job Title Self-identified
Gender

Age
Group

Programming
Experience

Machine
Learninig Skill

LLM
Usage

P1 Product Manager Woman 25 - 34 Beginner Beginner At least once a month
P2 Image Tuning Engineer Man 35 - 44 Intermediate Beginner At least once a week
P3 Program Manager Woman 45 - 54 No experience No experience At least once a week
P4 Hardware Engineer Man 35 - 44 Intermediate No experience At least once a month
P5 Technical Program Manager Man 35 - 44 Beginner No experience At least once a day
P6 Senior Hardware Engineer Man 35 - 44 Beginner No experience At least once a month
P7 Technical Program Manager Woman 18 - 24 Beginner Beginner Never used it
P8 Technical program manager Man 25 - 34 No experience No experience Multiple hours every day
P9 Solutions Engineer Man 25 - 34 Beginner No experience At least once a month

P10 Program Manager Man 55 - 64 Beginner Beginner At least once a month
P11 Program Manager Woman 35 - 44 No experience No experience Never used it
P12 Lab Manager Man 35 - 44 Intermediate Beginner At least once a week
P13 Partner Development Manager Man 25 - 34 Beginner Beginner At least once a week
P14 Hardware Engineer Man 25 - 34 Beginner Beginner At least once a week
P15 Global Supply Manager Man 25 - 34 Beginner No experience At least once a month
P16 Global Supply Manager Woman 55 - 64 No experience No experience At least once a week

Figure 14: Text-based pipeline. The “String picker” node provides users a drop-down menus to select one URL from a list of
URLs returned by “Google Search”. “PaLM Text Generator” is an LLM used to summarize the full HTML page.

Figure 15: Real-time multimodal pipeline. The “Keyword to
image” node is used to search a sunglasses image, and the
“Virtual sticker” node anchors the sunglasses onto the user’
face.

and asked participants themselves to go through the instruction
processes in the training task (Figure 7).

In the Visual Blocks condition, one participant first dragged a
“Virtual sticker” into the workspace when s/he wanted to build
the multimodal pipeline as required (Figure 15). After a while,
s/he asked us for the meaning of “landmarks” on the first input
port of the “Virtual sticker” node (Figure 15). We then answered
this question and provided a hint on the “Face landmark” node
(Figure 15) that could produce the “Face landmarks” required by
the “Virtual sticker”. While we had explained all the nodes that the

participants need to use in the study in the training task (Figure 7),
we consider such technical questions reasonable because all of
our participants are non-experts. Programming itself is a difficult
skill, and it is quite common that people may forget some of the
knowledge that they have just learned. Instead of being silent and
keeping the participants stuck on a technical issue, we believed
offering technical help was an important action we must take to
ensure the data quality we collected in the study.

These anecdotes in the user evaluation reveal several limitations
of the visual programming system: some designs may not be very
intuitive to non-experts. Since the goal of our user evaluation is
understanding the benefits of InstructPipe compared to Visual
Blocks (without AI assistants), we made our best efforts to
take action to prevent the effects caused by other factors from
influencing our data. Meanwhile, we also encourage future work
to further explore the system design so that future users can more
easily use our assistant in visual programming.
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Table 4: The counterbalance sheet of the user evaluation. Each cell is in the format of “Interface / Pipeline”. “Instruct” and “VB”
mean the “InstructPipe” and “Visual Blocks” conditions, respectively. “Search” and “Tryon” represent the “text-based pipeline”
(Figure 14) and the “real-time multimodal pipeline” (Figure 15), respectively.

ID Step 1 Step 2 Step 3 Step 4
P1 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P2 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P3 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P4 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P5 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P6 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P7 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P8 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P9 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P10 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P11 Instruct / Search Instruct / Tryon VB / Search VB / Tryon
P12 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P13 VB / Tryon VB / Search Instruct / Tryon Instruct / Search
P14 Instruct / Tryon Instruct / Search VB / Tryon VB / Search
P15 VB / Search VB / Tryon Instruct / Search Instruct / Tryon
P16 Instruct / Search Instruct / Tryon VB / Search VB / Tryon

D.4 Counter-Balancing and The Replication
Number

Table 4 presents how we perform counterbalance in the user evalu-
ation. We counterbalanced both the interface factor (“InstructPipe”
and “Visual Blocks”) and the pipeline factors to reduce the learning
effects. We then replicated the order four times so that we collected
multiple data from different participants in each unique study order.
This helps strengthen the power of the data we collected in the
study. Note that, in the group of P5 - P8, we flipped the orders
within P5 and P6 as well as P7 and P8, but this does not cause a
difference in the counterbalance process.

22


	Abstract
	1 Introduction
	2 Related Work
	2.1 Visual Programming
	2.2 Interactive Systems with LLMs

	3 InstructPipe
	3.1 User Workflow
	3.2 Primitive Nodes

	4 Pipeline Generation from Instructions
	4.1 Pipeline Representation
	4.2 Node Selector
	4.3 Code Writer
	4.4 Code Interpreter

	5 Technical Evaluation
	5.1 Data Collection
	5.2 Metric: The Number of User Interactions
	5.3 Experiment Setups and Results

	6 User Evaluation
	6.1 Study Design
	6.2 Procedure
	6.3 Participants
	6.4 Metrics
	6.5 Results

	7 Discussion
	7.1 Human-AI Collaboration in Prototyping Open-ended ML Pipelines
	7.2 Three Attributes to Mental Workload
	7.3 Instructing LLMs Poses Challenges for Both Novices and, Potentially, Experts

	8 Limitations and Future Work
	8.1 Assisting Humans to Prompt AI Copilot in Visual Programming
	8.2 Node Parameter Tuning
	8.3 A Larger and Dynamic Node Library
	8.4 Refining System Component Design
	8.5 Evaluation Metrics and Long-term Evaluation
	8.6 Responsible AI

	9 Conclusion
	Acknowledgments
	References
	A A Full List of 27 Nodes in InstructPipe
	A.1 Input Nodes
	A.2 Output Nodes
	A.3 Processor Nodes

	B System Implementation
	B.1 System Prompts Used in LLM Modules
	B.2 Code Interpreter

	C Technical Evaluation
	C.1 Data Post-Processing
	C.2 Evaluation Metric: The Number of User Interactions

	D User Evaluation
	D.1 Semi-structured Interview Script
	D.2 User Study Pipelines
	D.3 Assistant Provided to the Participants in the User Evaluation
	D.4 Counter-Balancing and The Replication Number


