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LegacyAvatars: Volumetric Face Avatars For Traditional Graphics Pipelines
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Figure 1. We present a novel representation for rendering animatable volumetric 3D face avatars using meshes and textures. From an
enrollment sequence of a subject, we learn a layered mesh and blend-textures that model the geometry, appearance and deformations, and
a simple linear transformation that maps tracked face model parameters to blend weights. Our representation is readily compatible with
existing streaming infrastructure and can be deployed in traditional graphics pipelines in a device- and platform-agnostic way.

Abstract

We introduce a novel representation for efficient classi-
cal rendering of photorealistic 3D face avatars. Leveraging
recent advances in radiance fields anchored to paramet-
ric face models, our approach achieves controllable volu-
metric rendering of complex facial features, including hair,
skin, and eyes. At enrollment time, we learn a set of ra-
diance manifolds in 3D space to extract an explicit lay-
ered mesh, along with appearance and warp textures. Dur-
ing deployment, this allows us to control and animate the
face through simple linear blending and alpha composit-
ing of textures over a static mesh. This explicit represen-
tation also enables the generated avatar to be efficiently
streamed online and then rendered using classical mesh and
shader-based rendering on legacy graphics platforms, elim-
inating the need for any custom engineering or integration.
https://syntec-research.github.io/LegacyAvatars/

1. Introduction

Practical realization of real-time 3D face avatars [7, 37] de-
mands progress on several fronts—capture (or enrollment),
streaming, animation, and 3D rendering (or view synthe-
sis). Over the last decade, modeling and rendering of
these avatars have seen significant progress by enhancing
surface-based geometry representation of parametric face
models [12, 29] with volumetric components such as point
clouds [62], neural radiance fields [1, 2, 18, 64], or 3D
Gaussians [8, 32, 41, 58]. Such volumetric techniques have
improved the overall visual quality of the avatars and en-
abled data-driven modeling of the rigid and non-rigid dy-
namics of the human face [17, 26, 28, 51].

Current volumetric avatars still face several practical
drawbacks that limit their large-scale, real-world applica-
tions. First, these representations are not natively com-
patible with the widely available rendering infrastructure.
Most avatar applications on real devices are built using


https://syntec-research.github.io/LegacyAvatars/
https://arxiv.org/abs/2601.12285v1

legacy platforms such as game engines (like Unity or Un-
real) and design and rendering software (like Blender or
Maya), which have been optimized over decades to effi-
ciently use meshes and textures. Second, they are not imme-
diately compatible with the existing streaming infrastruc-
ture for real-time applications, unlike 2D image and video
streaming, which are widely used across devices and ap-
plications due to dedicated hardware, driver software, and
compressed data formats. Modern volumetric representa-
tions typically parameterize the scene density and radiance
with a neural network [34], hash grids [35], or 3D Gaus-
sians [22], which have been demonstrated with custom-built
proprietary back-end infrastructure, but cannot easily oper-
ate across graphics platforms, limiting their practical adop-
tion [9, 50]. Recently, game engine plugins have emerged
that support static and dynamic volumetric scenes using 3D
and 4D Gaussians [31, 40], but streaming animatable or
controllable volumetric content like face avatars into such
legacy graphics platforms remains an unsolved problem.

Motivated by these limitations, we develop a represen-
tation that allows animatable volumetric rendering of face
avatars using only legacy primitives like meshes and tex-
tures without relying on ML inference, facilitating native
compatibility with standard graphics platforms. To achieve
this, our key insight is to discretize and quantize all continu-
ous scene components of a face avatar—geometry, appear-
ance, and deformation—into classical primitives and modu-
late them using an animation control signal. We draw inspi-
ration from radiance manifolds (RM) [10] that represent the
volumetric radiance domain using a set of continuous non-
intersecting surfaces. Previous works have leveraged RM
for 3D playback of pre-recorded dynamic sequences [33]
by discretizing the surfaces and exporting them as a layered
mesh and transparent RGBA texture that can be rendered
through the standard graphics pipeline with additional al-
pha compositing. A similar paradigm was used for cre-
ating animatable avatars [11] by learning deformable RM
using a 3D morphable face model, which relies on neural
networks to generate the animated appearance, leading to a
complex rendering pipeline that disallows native compati-
bility and easy interoperability between graphics platforms.
While these methods utilize RM for discretizing scene ge-
ometry and appearance, they do not provide any means to
discretize or explicitly control the scene deformation.

We build on these ideas by tackling the problem of dis-
cretizing and controlling the deformation and animation.
We uniquely show that animation control does not require
deforming the layered mesh vertices, but simply offsetting
the UV coordinates that are used for sampling the RGB
and alpha textures. We also show that these UV-offsets for
a given expression can be modeled using a simple linear
transform of the tracked face model parameters. Our re-
sulting assets consist of a single layered mesh and a basis

of appearance and UV-warp texture maps that need to be
streamed only once at the beginning, using standard mesh
and image compression. We achieve temporal animation
of the avatar by streaming only the tracked face model pa-
rameters (~2KBs per frame), which are then linearly trans-
formed to linear-blend coefficients for the texture bases to
achieve the final layered appearance texture. Our assets can
be rendered on any device using a single pass of a simple
programmable shader for linear compositing followed by
standard rasterization. In summary,

* We present a novel representation for volumetric 3D face
avatars that models geometry, appearance, and deforma-
tion of the scene using only legacy graphics primitives
of a layered triangle mesh and a set of textures, with-
out relying on ML inference for rendering. This allows
native compatibility with widely available graphics plat-
forms and online streaming infrastructure.

* Through qualitative and quantitative comparisons on a
publicly available dataset [57], we demonstrate that our
representation achieves efficient rendering on a traditional
graphics platform like WebGL on a consumer laptop,
while maintaining volumetric visual quality.

2. Related Work

Early methods. The first real-time 3D avatar systems
were realized using differentiable 3D morphable face mod-
els (3DMMs) [5, 12], enabling efficient optimization frame-
works for canonical performance capture and playback. But
these models typically suffer from insufficient representa-
tional capacity since they are inherently low-dimensional
and cannot model complex, high-frequency effects in ge-
ometry and appearance, limiting the output visual quality.

Volumetric methods. Complex geometry and appearance
of faces, including hair and eyes, have recently been mod-
eled using volumetric methods. Park et al. [38, 39] show
that radiance fields can be combined with a learned defor-
mation field to reconstruct a high-quality 3D canonical face
model, including minute details such as hair strands. Such
ideas have been extended to real-time avatars by enhanc-
ing 3DMMs with volumetric radiance fields [1, 3, 7, 14, 18,
27, 30]. More recently, point clouds [62] and 3D Gaus-
sians [8, 28, 32, 41, 46, 53, 58] have been used to achieve
best-in-class real-time avatars using similar strategies, but
they suffer from other challenges that limit their applica-
tions. For example, Gaussian splatting (GS) implementa-
tions are typically fine-tuned for specific compute archi-
tectures like GPUs, hence cannot be easily deployed in a
hardware-agnostic setting. GS also suffers from the famous
issue of popping phenomenon due to the primitive ordering
during view-dependent rendering, causing distracting arti-
facts in the scene. While there exist methods that intro-
duce sorting-free GS [19, 42], they are tailored for general,
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Figure 2. Training pipeline for enrollment phase. Our model consists of three separate modules: a manifold predictor M, a warp
predictor W, and a texture predictor 7. Here, M is a scalar field that defines layered implicit surfaces. The intersections with these
surfaces are spherically mapped to the UV-space via a learnable function f. Then, the output subsequently queries WV to obtain a basis of
UV-offsets. These offsets are then linearly blended as a function of expression parameters of a face model and added to the original values.
Finally, the new coordinates are fed through 7, which predicts a basis of RGBA appearances that are also linearly blended as a function of
expression parameters. Each module takes in learned latent codes ¢y, , ¢w, ¢+ for multi-subject training, while YV and 7 take in learnable

embedding matrices F,, and F; to output bases of warps and textures.

static scenes. Finally, Gaussian primitives are not natively
compatible with the existing streaming infrastructure, hence
streaming them requires specialized engineering [49].

Several avatar representations have focused on efficient
engineering by discretizing the 3D volume to achieve real-
time results. Tri-plane representations learn features in or-
thogonal planes and project them to 3D [4, 44, 45, 48]. Hash
grids [64] and hash ensembles [3, 25] voxelize the 3D space
while promoting quick spatial queries, leading to real-time
rendering of radiance fields. Tetrahedral fields have been
used to directly deform a volumetric representation to real-
ize animatable avatars [16, 20, 60]. But similar to Gaussian-
based approaches, these methods also require custom engi-
neering for deployment to real-world scenarios.

Another class of methods extends classical mesh-based
blendshapes to volumetric representations by introduc-
ing blendable bases using neural fields [15] or Gaussian
primitives [32]. Although our method follows a similar
principle—as we also combine a fixed set of assets to syn-
thesize novel expressions—these methods rely on explicit
3D deformations to represent changes in the face geome-
try. Moreover, like their conventional neural field or 3D
Gaussian-based counterparts, they are not immediately suit-
able for practical telepresence systems.

Implicit surface-based methods. We draw inspiration
from a class of methods that learn a collection of im-
plicit surfaces [10, 13] to discretize the 3D volume [11, 33,
56, 59]. These methods were first used in a GAN-based
pipeline to generate 3D renderings of novel human identi-
ties [10] and then extended to control their generated pose
or expression [56, 59]. FaceFolds [33] uses radiance mani-
folds to model pre-recorded videos of dynamic face perfor-
mances of real people and exports them as a static layered
mesh textured with an RGBA video, demonstrating compat-

ibility with traditional 3D rendering and streaming systems.
But it does not explicitly discretize or control face defor-
mations and merely captures them in appearance textures
for playback, providing no means to control or animate the
faces. We build on these ideas to achieve animation by 1) in-
troducing a warping mechanism to represent most geomet-
ric changes in UV-space deformations instead of offloading
all variations to alpha composition of appearance textures,
2) representing warp and appearance as linear combinations
of a fixed basis of assets to achieve ML-free rendering, and
3) leveraging synthetic data to enable generalization in the
low-dimensional expression parameter space without real-
izing the full 3DMM mesh.

An avatar system most similar to our representation is
BakedAvatar [11], which similarly extracts layered mesh
and textures from learned implicit surfaces. But differ-
ently, they perform face animation by explicitly deform-
ing their layered meshes using per-vertex FLAME defor-
mation weights [29]. In the fragment shader, they rely on
an MLP to dynamically compute blend weights, which lin-
early combine multiple pre-baked textures to produce the
final pixel color. Since these non-linear deformations and
neural network inference demands custom engineering dur-
ing deployment, their representation is not natively com-
patible with legacy renderers. In addition, their per-pixel
MLP queries also make scaling to higher resolutions in-
creasingly more expensive. Whereas in our method, we
1) model deformations discretely and linearly in the UV
space of a static mesh without having to deform it, and 2) do
not rely on any neural networks at deployment time, which
helps us achieve real-time performance at high resolutions
on consumer devices, as well as backward compatibility
and streamability trivially. We perform a thorough evalu-
ation against BakedAvatar [11] to adequately demonstrate,
both qualitatively and quantitatively, the improvements our



method offers—in terms of both visual quality and com-
pute efficiency and while, most importantly, being readily
compatible with legacy graphics pipelines.

3. Methodology

A 3D avatar system generally consists of two phases, an
enrollment phase in which the avatar is created using data
captured from a subject, and a deployment phase in which
the avatar is streamed, animated, and rendered on the client
device from a desired viewpoint. Our goal is to design
a volumetric avatar representation that is compatible with
legacy rendering platforms during the deployment phase.
We achieve this by exporting our enrolled volumetric avatar
to classical graphics primitives like meshes and textures
that can be rendered efficiently using simple programmable
shaders on any graphics platform without additional cus-
tom engineering, agnostic of the underlying device hard-
ware or software. We also aim to make our representation
conducive to online streaming, which includes the ability to
trade off quality and data bandwidth via data compression,
similar to today’s online video streaming systems.

3.1. Avatar as Layered Mesh

Given the calibration video of a subject, our objective is
to learn a single layered mesh representation of the subject
that can be dynamically textured using expression coeffi-
cients of a parametric face model in real-time. Similar to
previous methods, we use radiance manifolds [10] to model
the geometry as a set of static 2D implicit surfaces [33, 59],
and the appearance as a UV-mapped dynamic radiance con-
trolled by the 3DMM coefficients [11].

Our geometry is modeled by learning a set of N im-
plicit surfaces {S;}¥, defined by a single manifold pre-
dictor M : R?® — R, which takes in a 3D point x € R3
and outputs a scalar value s € R. We first map all points on
these surfaces via a learnable function f : S; — [—1,1]?
to obtain UV-space coordinates. In the UV-space, we learn
a set of W warp fields and 7' RGBA texture fields for each
surface by parameterizing the following functions as MLPs:

Wi :u— du (1)
Tik :ur—c, 2)

where u € [—1,1]2 is a UV-space coordinate, fu € R? is a
UV-space offset, ¢ € R? includes a scalar alpha value and
view-dependent color parameterized using spherical har-
monics [43], and ¢ € {1,2,...,N}, j € {1,2,..., W},
k € {1,2,...,T}. Given a set of face model parameters
p € RP of a single frame, a layered warp field {W;}¥,
and a layered texture field {7;}Y, are obtained by

w T
W= Wi and Ti=Y BT 3)

j=1 k=1

where {7;};%, and {f}{_, are a set of weights obtained
as a learnable linear function of p.

Given a 3D point x € §; and its UV-coordinate u, we
compute the warped UV-values u’ = u+W;(u), which are
used to query the blended texture field to obtain color and
transparency as ¢ = 7;(u’). We design our pipeline in a
way that the implicit surfaces and the warp and texture bases
can be efficiently discretized and exported into a layered
mesh and UV-space maps in pixel-space, allowing them to
be immediately deployed to any graphics platform without
relying on custom rendering algorithms or ML tools.

3.2. Dataset

To train our model, we use multiview videos from the
NeRSemble dataset [25], which consists of a set of subjects
with various facial expressions and talking sequences. We
fit a parametric face model to the video sequences of each
subject to obtain per-frame expression coefficients as well
as per-pixel UV-values to explicitly supervise correspon-
dences between different frames. As a preprocessing step,
we transform the camera extrinsics to align faces across
frames to a canonical 3D face in order to account for strong
head rotations during the capture. We downsample the orig-
inal images to 802 x 550 resolution.

Expression generalization. Learning an expressive geom-
etry and appearance model that also generalizes to novel ex-
pressions outside of the calibration sequence is a challeng-
ing and ill-posed problem. Furthermore, sampling across
2D discrete surfaces instead of the entire 3D volume intro-
duces more instability in training, which can cause shelling
artifacts in extreme poses [33]. To aid generalization to
novel expressions and to mitigate stability issues arising in
joint learning of geometry and appearance, we introduce a
multi-subject training paradigm. Uniquely, we make use of
a publicly available synthetic multi-view multi-expression
image dataset [6]. In our experiments, we combine each
subject in the NeRSemble dataset [25] with a number of
synthetic subjects that have similar face shapes to the real
subject. We show that such joint training helps avoid over-
fitting to the expressions from the calibration sequence of
the target subject and prevents artifacts. Please see the sup-
plementary results for more details.

3.3. Model Architecture and Training

Our architecture consists of three modules: a manifold pre-
dictor M, a UV-space warp predictor W, and a texture pre-
dictor 7, which we illustrate in Fig. 2.

Manifold predictor. We implement our manifold predictor
as a subject-specific scalar field that takes in 3D coordinates
in zyz-space and a learned latent code ¢,,, for each subject.
This module defines a set of N implicit surfaces, which are
static for the entire sequence of a given subject. To achieve



this, an input 3D point is first deformed using a subject-
specific deformation field, and subsequently used to predict
a scalar value that determines the manifold geometry. Given
a camera ray, we first find xyz-space intersections of this
ray with each manifold [36] and compute an initial set of
UV-coordinates using spherical mapping [33]. But since we
are interested in learning dense UV-space correspondences
across frames consistent with the ground truth UV values,
this spherical transformation is done with respect to a scene
center set as a 3D learnable parameter instead of a fixed one.

UV-space warp predictor. Uniquely in our animation
model, we learn a basis of UV-space offsets for each of the
surfaces implemented as an MLP, which receives a learned
subject code ¢,, and a set of W learned latent codes rep-
resented as an embedding matrix E,,. This defines a set
of warp fields that can be linearly combined into a single
warp field, which is used to add offsets to the input UV-
coordinates before querying the appearance model. In par-
ticular, we first linearly map the per-frame expression co-
efficients to a set of weights that linearly blend the pre-
dicted UV warps across different surfaces. We note that the
blending weights are the same for all surfaces, facilitating a
lightweight compute at rendering time.

UV-space texture predictor. To account for the geometry
and appearance changes that cannot be fully modeled by
the UV-offsets (such as the inner mouth, eyelid motions, or
complex specularities on the skin), we learn a set of UV-
space explicit blend-textures that can also be linearly com-
bined into a single layered texture using the 3DMM expres-
sion parameters. Our texture predictor receives a learned
subject code ¢; and a set of T" learned latent codes repre-
sented as an embedding matrix E;, and it outputs 2-degree
spherical harmonics coefficients for radiance [43] and a
scalar alpha value. Finally, given a UV-space coordinate
u’ and a view direction in xyz-space, the output of our en-
tire pipeline is an RGB radiance and an alpha value, which
are composited across rays to produce the final color:

At inference time, we decompose the radiance into diffuse
and specular components, which provides further flexibility
on the size of the assets that are exported from the model.
In Fig. 3, we illustrate our renders for each component.

Loss functions. We train our pipeline in an end-to-end fash-
ion by adopting the following loss function:

L= ‘Crec + /\uvﬁuv + /\silhﬁsilh + Aregﬁreg )

where L. is an ¢1 reconstruction loss between predicted
and ground truth pixel values, L, is an ¢ loss between the
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Figure 3. Radiance decomposition. During training, the radiance
is modeled using spherical harmonics coefficients, which can be
decomposed into diffuse (view-independent) and specular (view-
dependent) components. The appearance can be exported as just
diffuse or both diffuse and specular texture images.
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Figure 4. UV-space predictions. Given a ground truth per-pixel
UV-coordinates ugt, our model is supervised to match the expec-
tation of warped coordinates 1’ to the ground truth. We visualize
the expectations of the spherically mapped coordinates 1 and the
warps du for reference.

per-pixel expected UV-coordinates and ground truth UV-
values computed only on skin regions of the face, Ly, is a
silhouette loss that guides the geometry of each layer using
per-image foreground masks [11], and L., is the regular-
ization term that penalizes predicted warps, specular radi-
ances, and manifold predictor weights to promote training
stability [33]. Here, the expected UV for each pixel is ob-
tained by a weighted combination of the predicted warped
UVs across rays {u}}Y  as @’ £ SN w,u/, which is su-
pervised to match the ground truth UV-values at that pixel.
The UV supervision is a key term to improve the model ca-
pacity by registering the facial features consistent with the
UV topology of the 3DMM, so that the texture basis fo-
cuses on appearance changes that cannot be explained by
UV-space warps. We illustrate a representative test frame
along with its per-pixel UV values and warps in Fig. 4.

Training details. The manifold predictor is implemented
as two cascaded 4-layer MLPs of widths 128, which re-
spectively learn a subject-specific 3D warp field and a scalar
field that determines the manifold geometry. The warp pre-
dictor is a 6-layer MLP of widths 128, which takes in W
learnable embeddings of dimension 128 after the third layer.
The texture predictor is a 6-layer MLP of widths 256, which
receives 1" learnable embeddings of dimension 128 after the
third layer. The subject embeddings are 128-dimensional
vectors, which condition each module individually. We op-
timize our entire model using the Adam optimizer [24] with



initial learning rates of 0.0007, 0.0005, 0.0008 and expo-
nential decay rates of 0.20 per 200000 iterations for M,
W, and T, respectively. With a batch size of 32 768 rays
sampled across all subjects, frames, and views, we train our
pipeline for 500 000 iterations, which takes approximately
36 hours over 8 NVIDIA H100 GPUs.

3.4. Exporting 3D Assets and Model Deployment

Similar to previous works [33], we discretize our contin-
uous manifolds by shooting rays from a hemisphere (cen-
tered at the learned scene center) uniformly in azimuth and
elevation angles, gathering all intersections and topologiz-
ing them into a triangle mesh. We use the same set of points
to query our warp and texture predictors to obtain a basis of
UV-space offsets and appearance maps. Uniquely, we ex-
port the linear functions that map expression coefficients to
blend weights as individual matrices, allowing us to control
animation without deforming the mesh but through simple
blending of our warp textures. Depending on the applica-
tion, the mesh can be decimated to reduce the number of
primitives, while UV-offset and appearance maps can be
downsampled to lower resolutions. Our final assets merely
comprise a single layered mesh with a fixed topology as
well as warp and appearance maps, and they can easily be
deployed to any graphics platform for rendering.

3.5. Rendering

The linear blending and alpha compositing is performed by
a programmable shader that receives the exported 3D as-
sets, as well as face model parameters p and the camera
viewpoint, as shown in Fig. 5. Here, blend and warp phases
are simple linear operations, while rasterization is a projec-
tion operation handled by the standard graphics pipeline.
By learning a canonical geometry and modeling deforma-
tions in the 2D UV-space instead of the 3D space, we can
disentangle their parameterization into a single mesh and a
set of warp maps. In our results, we show that it is possi-
ble to model the blend weights for the warp and appearance
bases as a linear transformation of the expression parame-
ters. This makes animation a very simple linear operation
without having to explicitly account for complex non-rigid
dynamics in 3D. This is in contrast to mesh-based avatar
methods such as BakedAvatar [11], which handles anima-
tions by explicitly deforming meshes.

A note on rendering efficiency in comparison with mod-
ern methods. Rasterizing triangles is inherently signif-
icantly faster than the standard implementations of volu-
metric rendering techniques such as Gaussian splatting and
neural fields on a per-primitive and per-pixel basis. Gaus-
sian splatting requires an expensive sorting operation, while
neural fields rely on tracing rays, sampling multiple points
along the ray that need to be contiguously integrated. Ras-
terizing our ordered mesh representation does not suffer
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Figure 5. Programmable shader. At the deployment phase, our
3D assets (a single static layered mesh and bases of warp and tex-
ture maps) can easily be used to render dynamic and volumetric
faces via a programmable shader on any graphics platform.

from such challenges since sorting is handled using the
depth buffer. Finally, we do note that there are several im-
plementations of 3D Gaussian splatting and neural fields,
including hash grids like InstantNGP [35] and hierarchical
embeddings [23] that offer faster results, but they are often
engineered for particular hardware such as a GPU or require
custom implementations for wide-scale deployment.

3.6. Streaming

Our method simplifies data transmission by initially send-
ing the static mesh, blend textures, and linear transforma-
tions only once. Subsequently, only per-frame face model
parameters p are streamed, which are fed directly to the
programmable shader in Fig. 5. Our technique also offers a
unique advantage in multi-avatar interaction scenarios. In
a 1-on-1 interaction, complete client-side rendering is ideal,
as it minimizes the amount of data that must be transmit-
ted. But in a multi-avatar scenario, offloading compute to
the server side is more efficient as it avoids duplication of
compute effort across multiple clients. Our pipeline allows
for expression-related computations such as warping and
blending to be performed on the server side, so that only
the view-dependent rendering is left to the client side. Most
importantly, since the output of our warping and blending
operations is a set of texture maps, they can be conveniently
transmitted as a compressed video stream. This allows for a
healthy trade-off between compute and transmission band-
width. Such a trade-off is not trivially available with other
volumetric techniques, including other layed-mesh based
techniques like BakedAvatar [11].

4. Experiments and Results

In our experiments, we set N = T" = W = 12. Following
FaceFolds [33], we select a number of manifolds that al-
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Figure 6. Novel view synthesis results. Our model achieves pho-
torealistic volumetric rendering of 3D face avatars. Please see the
supplementary material for video demonstrations.
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lows for volumetric effects while maintaining rendering ef-
ficiency. Similarly, basis sizes are tuned to balance compu-
tational efficiency with the model’s expressivity. We use the
first 9 talking sequences of each subject from the NeRSem-
ble dataset [25] for training and use the last one for testing.
We hold out 2 of the 16 cameras in training data to evaluate
our model’s performance quantitatively. To aid the training
stability and generalization, we gather 25 subjects from the
synthetic data corpus with the closest head shapes to the real
subjects, as discussed in Sec. 3.2. We measure this proxim-
ity using a variance-weighted Euclidean distance between
the PCA identity vectors.

We compare against five state-of-the-art efficient vol-
umetric avatar techniques, BakedAvatar [11], Gaussian
Head Avatar (GHA) [58], GaussianAvatars [41], MonoA-
vatar++ [3], and PointAvatar [62]. We chose these meth-
ods as representative techniques that achieve fast rendering
and employ layered meshes, Gaussian splatting, or neural
radiance fields as the underlying volumetric representation.
Note: The goal of our method is to achieve volumetric ef-
fects using legacy primitives and no ML inference. We do
not claim that we outperform continuous volumetric avatar
techniques that are based on Gaussians or NeRFs on over-
all visual quality. We only show comparable results with a
sample of such methods in order to visually place our tech-
nique in the overall context of the state-of-the-art.

4.1. Qualitative Results

Novel view synthesis. We illustrate our novel view synthe-
sis results in Fig. 6. Our method generalizes over differ-
ent subjects with varying face geometries and appearances.
Please refer to the supplementary material for video demon-
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Figure 7. Qualitative comparisons. Our technique achieves com-
parable visual quality to modern neural rendering techniques while
facilitating 3D animations in a platform-agnostic way.

BakedAvatar

Ours

Table 1. Quantitative comparisons. Our model attains similar
performance compared to the state-of-the-art methods.

Method PSNR 1 SSIM t LPIPS |
PointAvatar 23.80+1.28 0.872+0.016 0.13740.018
MonoAvatar++  27.45+2.43  0.936+0.011  0.098+0.009
GHA 24.294+2.16 0.8634+0.039 0.102+0.024
GaussianAvatars ~ 27.54+1.69  0.9314+0.017 0.066£0.015
BakedAvatar 24.38+0.78  0.888+0.013  0.11740.018
Ours 26.97+1.23  0.929+0.007 0.11740.006

strations and comparisons with other methods.

Self- and cross-reenactment. We show renders of test ex-
pressions from the held-out views and compare them with
baseline methods in Fig. 7. Our model achieves comparable
visual quality to the previous methods that rely on sophis-
ticated primitives or MLP queries at rendering time. Please
refer to the supp. video for cross-reenactment results.



4.2. Quantitative Results

For three subjects (with IDs 055, 264, and 306), we per-
form quantitative evaluations on two held-out views across
the entire test sequences, consisting of over 800 images. We
report average image quality metrics in PSNR, SSIM [54],
and LPIPS [61] for our method and other methods in Tab. 1,
where we observe comparable average performance, with
differences falling within the margin of variance.

4.3. Ablation Studies

Mesh and texture resolution. Similar to FaceFolds [33],
our representation has the flexibility to efficiently trade
off image quality with rendering efficiency by reducing
the number of primitives of the exported mesh and down-
sampling the layered textures. Given a layered mesh at
512 x 512 vertex resolution (per layer) with canonical tex-
ture coordinates as vertex attributes, we first gather the ver-
tices from each layer as an oriented point cloud and perform
Poisson surface reconstruction [21] to obtain watertight sur-
faces [33]. Then, we use an off-the-shelf mesh decimation
algorithm to reduce the number of vertices in the mesh to
a given target. Since our model is trained to represent a
variety of expressions with a single set of static surfaces,
the exported meshes roughly correspond to the coarse face
geometry of the subjects. Therefore, we can reduce the to-
tal number of primitives significantly without sacrificing the
visual quality, see Fig. 8 and the supplementary video.

If there is any need to decrease the resolution of the
streamed avatar (such as reduced data bandwidths), we can
dynamically downsample our video textures using the ex-
isting infrastructure. We report view synthesis and anima-
tion results for a variety of texture resolutions, illustrated
in Fig. 8 and the supplementary video. For more ablations,
please refer to the supplementary material.

4.4. Real-time Rendering on Web Browsers

Our representation is natively deployable on graphics plat-
forms and enables real-time rendering of volumetric face
avatars using a simple programmable shader. Using WebGL
on a consumer laptop, we achieve the frame rates shown
in Fig. 9 for varying mesh resolutions and rendering res-
olutions, while keeping the memory usage less than 2 GB
at 5122 mesh resolution and 2K rendering resolution. We
emphasize that our approach discretizes all scene compo-
nents, placing it on the memory-intensive side of the inher-
ent memory—compute trade-off. Nevertheless, by employ-
ing a moderate number of layers and basis sizes, our assets
remain sufficiently lightweight to maintain a memory foot-
print compatible with commodity hardware. We also ob-
serve that the performance of BakedAvatar [11] suffers sig-
nificantly at higher rendering resolutions owing to per-pixel
MLP queries, while our representation naturally scales well
to higher resolutions due to simple texture queries.

Mesh Resolution Texture Resolution

1282 5122
2567 5122

32
1282

162
642

Figure 8. Ablation on mesh and texture resolution. At the de-
ployment phase, our asset size can be trivially reduced with stan-
dard operations. Due to our smooth surface geometry, the visual
quality is maintained down to 32 X 32 mesh resolution, with a to-
tal number of primitives of <12 000, providing a very lightweight
volumetric representation for renders at 0.5K resolution. Simi-
larly, the texture resolution can also be adjusted for varying needs
of an application by downsampling layered textures.
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Figure 9. Frame rates on WebGL. Our assets can be deployed
to traditional graphics engines on web browsers using WebGL,
achieving cross-platform compatibility. These numbers are pro-
filed on Chrome 133.0 on a MacBook Pro with M1 Pro chip.
Frame rates above the refresh rate of 120 Hz are indicated as 120.

5. Conclusion

We present an efficient and natively-deployable representa-
tion for animatable volumetric face avatars for traditional
graphics pipelines. We achieve this by modeling the canon-
ical face geometry with a static layered mesh, and appear-
ance and deformation as textures. Our model enables ef-
ficient control of facial expressions through simple linear
blending of our texture assets based on the tracked face pa-
rameters. Thorough experimentation and analysis against
modern techniques demonstrate the efficacy of our method.
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6. Implementation Details

Architecture details. The warp and texture predictors are
implemented as 6-layer MLPs, where the subject-specific
embeddings ¢,,, ¢; are concatenated to the input coordi-
nates and each of the learned latent codes in embedding ma-
trices F,,, F; are concatenated to the features after the third
layer and fed through the model in parallel to produce a ba-
sis of warps and textures during each forward pass. In this
formulation, variations across the elements of the bases are
offloaded to single matrix, while the weights of the network
are shared. This provides sufficient variability within the
bases that can generate deformations and appearances with
high expressivity, while also maintaining computational ef-
ficiency at training time.

3DMM and fitting. Our 3DMM includes linear bases of
identity and expression. For each frame, we fit the 3DMM
by estimating 599 probabilistic landmarks in 2D and opti-
mizing identity, expression, rotation, and translation param-
eters of the 3DMM using a loss function that encourages
consistency between per-vertex landmarks of the 3DMM
and the observed 2D landmarks [55]. The parameter size
of our expression model is p = 63.

Synthetic data. We use the synthetic face dataset intro-
duced in [6], where we augment a subset of the subjects
in this dataset to the real data. During training, we con-
struct our batches by gathering 50% of the rays from the
real subject and the other 50% from synthetic subjects. To
ensure broad coverage of facial dynamics, synthetic expres-
sions are drawn uniformly across the entire dataset. We il-
lustrate the effectiveness of our joint real-synthetic training
in Fig. 10, where we observe that in the absence of synthetic
data, our model is prone to geometric instabilities and may
fail to generalize to novel expressions.

Exported assets. The blend weights for our warp and tex-
ture bases can be efficiently computed at rendering time by
linearly mapping p = 63 dimensional expression coeffi-
cients to W = T = 12 coefficients. Including the learned
constant offset in this mapping, this results in two weight
matrices of size 12 x 64.

Our canonical UV values, warp basis, and texture ba-
sis are all exported in the UV space, where the resolution
and the precision can be modified for different application
needs. Please refer to Fig. 11 for visualizations of our as-
sets. For renders at 0.5K resolution, we found that mesh,
warp map, and texture map resolutions of 512 x 512 are suf-
ficient to preserve the overall visual quality. Here, a 32-bit
precision is maintained for UV values, while the appearance
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Novel Views and Depths

Ground Truth  Rendered

with
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| }

Figure 10. Ablation on synthetic data. The stability and over-
fitting challenges can be mitigated by introducing synthetic face
data jointly trained with the real subject. This helps with gener-
alization to novel expressions in addition to regularization of the
learned face geometry.

2
2
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Figure 11. Visualizations of the assets. Illustrating a subset of
the learned warps and appearances. With tracked expression coef-
ficients of a 3DMM, these assets can be used to render a texture
video shown at the bottom. All images are alpha-composited for
visualization purposes.

is exported as 8-bit RGBA maps, where the view-dependent
radiances are discarded.
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Figure 12. Comparisons on novel view synthesis. Our model can
synthesize novel views at a comparable visual quality to MonoA-
vatar++ [3] and GaussianAvatars [41], while being less prone to
floater artifacts in NeRFs, and inherently preventing primitive or-
dering artifacts in 3DGS-based methods.

GaussianAvatars

MonoAvatar++

Ours

Table 2. Ablation study on sizes of warp and texture bases.
Texture and warp basis sizes improve rendering quality and gen-
eralization. These metrics are obtained on cropped images that
include the face region only.

PSNR 1 SSIM 1 LPIPS |
W=T=16 29.67+1.36 0.897+0.012 0.258 4 0.017
W=T=8 2047+1.39 0.894+0.012 0.259 4 0.017
W=T=4 2038+141 0.892+0.012 0.26340.016
W=T=2 28464121 0.882+0.012 0.276+0.019

7. Additional Results and Comparisons

Novel view synthesis comparisons. We provide com-
parisons on novel view synthesis with the state of the art
methods, see Fig. 12. NeRF-based methods like MonoA-
vatar++ [3] can manifest floating artifacts and 3DGS-based
methods may result in popping-like artifacts due to explicit
sorting of primitives [42]. Our method is not prone to such
artifacts by design, and the exported textured meshes can
be edited by an artist, providing additional flexibility to re-
move visual seams as a post-processing step. Please see the
supplementary video for better visualizations.

Warp and texture basis size ablations. To provide more
insights into our model, we evaluate its expressiveness by
modifying its warp and texture basis sizes. We illustrate our
results in Fig. 13 and evaluation metrics in Tab. 2, where
we observe that the overall rendering quality suffers and the
renders manifest artifacts as we reduce the basis sizes. Fur-
thermore, the model does not generalize to novel facial ex-
pressions and eye gazes as we reduce its capacity.
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Figure 13. Ablation on sizes of warp and texture bases. Suffi-
cient number of blendable warps and textures is crucial to achieve
good rendering quality and generalization to novel expressions.

Figure 14. Limitations. Layered mesh representations may suffer
from shell artifacts at extreme angles. While our approach outper-
forms existing baselines on visual quality on novel views at mod-

erate poses (left), at more extreme out-of-training profile views
(right) it also suffers from shell artifacts similar to the baseline.

BakedAvatar

8. Limitations and Future Work

The basic premise of our representation is the discretization
of scene components like geometry, appearance and defor-
mations. While this enables traditional rendering, it also
inherently limits the representational capacity compared to
continuous volumes such as radiance fields and 3D Gaus-
sians. Furthermore, since we project expression parameters
onto low-dimensional blend weights, our model may ex-
hibit blurring artifacts for extreme expressions, particularly
those involving strong deformations around the mouth. We
also note that our model does not explicitly account for the
head pose, and hence the neck and torso regions may show
slight instabilities in cases where the training sequences in-
volve strong head pose variations.

Our layered mesh with transparency can be seen as a
generalization of multiplane imaging (MPI) [63], where we
instead learn a set of surfaces that follow a coarse face ge-
ometry and represent dynamic scenes. Due to such coarse



geometry, there exists a fundamental limit to the viewing
angle range for artifact-free rendering [47]. At extreme an-
gles, our representation can manifest shell artifacts, please
see Fig. 14. We have also not tested our representation for
controlling/animating large deformations such as head/neck
rotations. These may also require additionally including
and optimizing for a root joint UV-deformation of the lay-
ered mesh in the neck region. Optimizing and regularizing
the topology of the layered mesh and the texture basis to
improve the overall representational capacity could be an
interesting future line of research.

The enrollment phase in our pipeline relies on ML train-
ing and inference, future work could explore simplifying
this process. Recently, generative models have been used to
learn a strong prior of face geometry and appearance [52],
allowing direct regression of the face volume from even sin-
gle images. Such quick and efficient techniques can further
help reduce the compute and memory cost of the enrollment
phase by learning a data-driven generative model. This can
particularly help extend our representation to consumer use-
cases such as monocular enrollment and tracking.

We believe that our work lays the important groundwork
of building a novel representation that is capable of repre-
senting, animating and synthesizing volumetric effects in
traditional graphics pipelines, and future work can build on
and expand it towards even more practical settings.
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