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Monocular RGB Video Controllable Photorealistic Head Avatar

Figure 1. Our technique builds a 3D avatar representation of a person using just a single short monocular RGB video (e.g., 1-2 minutes). We
leverage a 3DMM to track the user’s expressions. By anchoring a neural radiance field to the 3DMM geometry, we generate a volumetric
photorealistic 3D avatar that can be rendered with user-defined expression and viewpoint. Note that our method works well on challenging
materials, e.g., hair and dramatic expressions. Please see our webpage augmentedperception.github.io/monoavatar for more results.

Abstract

We propose a method to learn a high-quality implicit
3D head avatar from a monocular RGB video captured
in the wild. The learnt avatar is driven by a paramet-
ric face model to achieve user-controlled facial expressions
and head poses. Our hybrid pipeline combines the geom-
etry prior and dynamic tracking of a 3DMM with a neural
radiance field to achieve fine-grained control and photore-
alism. To reduce over-smoothing and improve out-of-model
expressions synthesis, we propose to predict local features
anchored on the 3DMM geometry. These learnt features
are driven by 3DMM deformation and interpolated in 3D
space to yield the volumetric radiance at a designated query
point. We further show that using a Convolutional Neural
Network in the UV space is critical in incorporating spatial
context and producing representative local features. Exten-
sive experiments show that we are able to reconstruct high-
quality avatars, with more accurate expression-dependent
details, good generalization to out-of-training expressions,
and quantitatively superior renderings compared to other

state-of-the-art approaches.

1. Introduction
Creating a controllable human avatar is a fundamen-

tal piece of technology for many downstream applications,
such as AR/VR communication [20,31], virtual try-on [37],
virtual tourism [13], games [42], and visual effects for
movies [12, 18]. Prior art in high-quality avatar generation
typically requires extensive hardware configurations (i.e.,
camera arrays [6, 12, 31], light stages [18, 29], dedicated
depth sensors [8]), or laborious manual intervention [1]. Al-
ternatively, reconstructing avatars from monocular RGB
videos significantly relaxes the dependency on equipment
setup and broadens the application scenarios. However,
monocular head avatar creation is highly ill-posed due to
the dual problems of reconstructing and tracking highly
articulated and deformable facial geometry, while model-
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ing sophisticated facial appearance. Traditionally, 3D Mor-
phable Models (3DMM) [7, 24] have been used to model
facial geometry and appearance for various applications in-
cluding avatar generation [9, 16, 22]. However, 3DMMs do
not fully capture subject-speci�c static details and dynamic
variations, such as hair, glasses, and expression-dependent
high frequency details such as wrinkles, due to the limited
capacity of the underlying linear model.

Recent works [3, 15] have incorporated neural radiance
�elds in combination with 3DMMs for head avatar gener-
ation to achieve photorealistic renderings, especially im-
proving challenging areas, such as hair, and adding view-
dependent effects, such as re�ections on glasses. The pio-
neering work of NerFACE [15] uses a neural radiance �eld
parameterized by an MLP that is conditioned on 3DMM
expression parameters and learnt per-frame latent codes.
While they achieve photorealistic renderings, the reliance
on an MLP to directly decode from 3DMM parameter space
leads to the loss of �ne-grain control over geometry and ar-
ticulation. Alternatively, RigNeRF [3] learns the radiance
�eld in a canonical space by warping the target head ge-
ometry using a 3DMM �t, which is further corrected by
a learnt dense deformation �eld parameterized by another
MLP. While they demonstrate in-the-wild head pose and
expression control, the use of two global MLPs to model
canonical appearance and deformations for the full spatial-
temporal space leads to a loss of high frequency details, and
an overall uncanny appearance of the avatar. Both of these
works introduce new capabilities but suffer from lack of de-
tail in both appearance and motion because they attempt to
model the avatar's global appearance and deformation with
an MLP network.

In this paper, we propose a method to learn a neural head
avatar from a monocular RGB video. The avatar can be
controlled by an underlying 3DMM model and deliver high-
quality rendering of arbitrary facial expressions, head poses,
and viewpoints, which retain �ne-grained details and accu-
rate articulations. We achieve this by learning to predict
expression-dependent spatially local features on the surface
of the 3DMM mesh. A radiance �eld for any given 3D point
in the volume is then obtained by interpolating the features
from K-nearest neighbor vertices on the deformed 3DMM
mesh in target expression, and passing them through a lo-
cal MLP to infer density and color. The local features and
local MLP are trained jointly by supervising the radiance
�eld through standard volumetric rendering on the train-
ing sequence [30]. Note that our networks rely on the local
features to model appearance and deformation details, and
leverages the 3DMM to model only the global geometry.

Learning local features is critical in achieving a high-
quality head avatar. To this end, we train an image-to-
image translation U-Net that transforms the 3DMM defor-
mations in the UV space to such local features. These UV-

space features are then attached to the corresponding ver-
tices of the 3DMM mesh geometry. We show that learn-
ing features from such explicit per-vertex local displace-
ment of the 3DMM geometry makes the model retain high-
frequency expression-dependent details and also general-
izes better to out-of-training expressions, presumably be-
cause of the spatial context between nearby vertices incor-
porated by the convolutional neural network (CNN). An al-
ternative approach is to feed the 3DMM parameters directly
into a CNN decoder running on the UV space. However,
we found this produces severe artifacts on out-of-training
expressions, particularly given a limited amount of training
data,e.g. for a lightweight, 1-minute data collection proce-
dure during the avatar generation process.

In summary, our contributions are as follows: we pro-
pose a neural head avatar representation based on a 3DMM-
anchored neural radiance �eld, which can model complex
expression-dependent variations, but requires only monoc-
ular RGB videos for training. We show that a convolutional
neural network running on per-vertex displacement in UV
space is effective in learning local expression-dependent
features, and delivers favorable training stability and gen-
eralization to out-of-training expressions. Experiments on
real-world datasets show that our model provides compet-
itive controllability and generates sharper and detail en-
riched rendering compared to state-of-the-art approaches.

2. Related Works

Building photorealistic representations of humans has
been widely researched in the past few decades. Here, we
mainly discuss prior art in head avatar and refer readers to
the state-of-the-art surveys [14,55] for a comprehensive lit-
erature review.
Monocular Explicit Surface Head (Face) Avatars. Tradi-
tionally, a typical approach to create head (or face) avatars
from monocular RGB videos is using a 3D Morphable Mod-
els (3DMM) as the foundation and adding personalized rep-
resentations, such as corrected blendshapes [16, 22], detail
texture maps [16,22], image-based representations [9], and
secondary components [21]. Early works use various op-
timizations to obtain the personalized representations from
monocular data, including analysis-by-synthesis [14,16,21,
55] as well as shape-from-shading [16, 22]. Recent ap-
proaches replace optimizations by regressions with Deep
Neural Networks (DNNs) [10,40,48], or integrate optimiza-
tions with deep learning components [4, 5]. More recent
methods leverage neural textures [17] to generate photore-
alistic appearances.

The main drawback of these methods is that they rely on
explicit meshes with a �xed topology, making it hard to han-
dle out-of-model details such as hair and accessories like
glasses and apparels. In contrast, our hybrid method com-
bines geometric priors with implicit representations, lead-



Figure 2. Overview of our pipeline. The core of our method is the Avatar Representation (Sec. 3.1. Shown as the yellow area) based on
a 3DMM-anchored neural radiance �eld (NeRF), which are decoded from local features attached on the 3DMM vertices. Then, we use
volumetric rendering to compute the output image. To predict the vertex-attached features (Sec. 3.2. Shown as the green area), we �rst
compute the vertex displacements from the 3DMM expression and pose, then process the displacements in UV space with Convolutional
Neural Networks (CNNs), and sample the obtained features back to mesh vertices.

ing to a signi�cantly larger representation capacity.
Monocular Implicit Head Avatars . Recent work pro-
poses to extend 3DMM with implicit 3D representations.
NerFACE [15] introduces a dynamic neural radiance �eld
(NeRF) conditioned on 3DMM expression codes which
can render a view-consistent avatar with volumetric render-
ing. Since NerFACE directly inputs the 3DMM expression
codes into MLPs without using any shape or spatial infor-
mation from 3DMM, their model is quite under-constrained
for monocular reconstruction, and suffers from severe arti-
facts for data with challenging expressions. RigNeRF [3]
uses 3DMM derived warping �eld to deform the camera
space into a canonical space, and de�nes a canonical NeRF
conditioned on 3DMM codes. However, their model uses a
dense MLP-based architecture to memorize the appearance
and deformation for the full head, leading to oversmooth
results due to limited network capacity. IMAvatar [53]
learns personalized implicit �elds of blendshapes, pose cor-
rectives, and skinning weights, then formulates the avatar
with linear summation of blendshapes followed by linear
blend skinning. However, their linear formulation limits the
amount of expression deformations.
Geometry Anchored Implicit 3D Representation. Sparse
local feature embedding attached on geometry has been
demonstrated to be effective in improving the rendering
quality of neural radiance �eld [26–28, 34, 54]. It also
naturally supports neural radiance �eld editing since the
modi�cation on the geometry can be directly propagated
to the rendering [11], which makes them a favorable rep-
resentation to support the controllability for human avatar.
We adapt this representation to head avatar and incorporate
head speci�c priors. Differently from prior art, we lever-
age a CNN in UV space to learn local, per-vertex features

that are expression-dependent, improving generalization of
out-of-train expressions.
2D-based Head Avatars. There are numerous approaches
that synthesize the head (or face) relying on 2D (ex-
plicit/implicit) representations, including 2D facial land-
marks [43, 49, 50] and 2D warping �elds [38, 39, 46].
Landmark-based avatar models [43, 49, 50] synthesize the
face conditioned to the facial landmarks extracted with a,
usually pre-trained, landmark detector. Speci�cally, an en-
coder is applied to extract an identity embedding from a ref-
erence image, a decoder is adapted by the identity code to
animate the reference face with landmarks from the driving
videos. X2Face [46] is the �rst approach to animate human
heads by learning a dense warping �eld and producing the
output video via image warping. MonkeyNet [38] and First
Order Motion Model (FOMM) further propose to infer mo-
tion �elds with self-learned keypoints, which signi�cantly
improves motion prediction and synthesizes higher quality
renderings of heads. While most aforementioned methods
can produce photorealistic results, they are not able to main-
tain geometry and multiview consistency due to their inher-
ent 2D representation.

3. Method

Given a monocular RGB video containingM frames
f I 1; I 2; :::; I M g, our method reconstructs a head avatar rep-
resentation that can be rendered under arbitrary facial ex-
pressions, head poses, and camera viewpoints. We �rst pre-
process the video to remove the background [19,32] and ob-
tain camera and 3DMM parameters for each frame. More
speci�cally, we use FLAME [24] as the 3DMM and denote
the �tted face with shape� , expressions i , poses� i (i.e.,



Figure 3. Illustration of Avatar Representation (Sec. 3.1). Given
a query point, we �nd its k-Nearest-Neighbor (k-NN) vertices
from the 3DMM. Then, we decode these vertices and features
into a density and color with respect to the input camera view
direction, via Multi-Layer-Perceptrons (MLPs) interleaved with
inverse-distance based weighted sum.

neck, jaw, and eyes), wherei is the frame index, with which
a head mesh can be obtained viaVi (� ;  i ; � i ). Since� is
�xed and does not depend on the pose or expressions for a
given user, we omit it in the following sections for brevity.

An overview of our framework is shown in Fig. 2. We
adopt the 3DMM-anchored neural radiance �eld (NeRF)
as the core representation for our head avatar (Sec. 3.1),
where local features are attached to the vertices of the de-
formable 3DMM mesh. During the inference, we �rst de-
form the 3DMM mesh based on the target con�guration
Vt = (  t ; � t ). Then, for an arbitrary 3D query point,
we aggregate the features from neighboring vertices onVt

to estimate the local density and color by Multi-Layer-
Perceptrons (MLPs), which are then integrated in the vol-
umetric rendering formulation to generate the color im-
age. To learn local features, we train CNN-based networks
in the UV space to incorporate spatial context (Sec. 3.2).
Our model is trained end-to-end with RGB supervisions
(Sec. 3.3).

3.1. Avatar Representation

An ideal representation for a head avatar should have
the following properties: 1) Provides intuitive control to
achieve the desired expression and head pose; 2) Requires
a moderate amount of training data,e.g., a short monocular
video; 3) Produces expression-dependent rendering details;
4) Generalizes reasonably well to unseen expressions.

To this end, we propose the 3DMM-anchored neural ra-
diance �eld (NeRF) as shown in Fig. 3. Inspired by local
feature based neural radiance �eld [34, 47], we attach fea-
ture vectorsz j on each 3DMM vertexv j

i to encode the local
radiance �elds that can be decoded with MLPs, wherei de-
notes frame index andj denotes vertex index. In this way,
the radiance �eld can be deformed according to vertex lo-
cations, hence can be intuitively controlled by the 3DMM
expression and pose ( i , � i ). In addition, the 3DMM �tting
on each frame provides a rough tracking across deformable

face geometries, such that all the frames can contribute into
the learning of a uni�ed set of local per-vertex features. We
will discuss model capacity and generalization in Sec. 3.2.

To decode the vertex featuresf z j g into the radiance �eld
for the framei , given a 3D query pointq, we �rst �nd its
k-Nearest-Neighbor (k-NN) vertices from the 3DMM mesh
f v j

i gj 2N q
k

with attached featuresf z j gj 2N q
k

. Then, we use
two MLPsF0 andF1 with inverse-distance based weighted
sum to decode local color and density. Formally,

ẑ j
i = F0(v j

i � q; z j )

ẑ i =
P

j wj ẑ j
i (1)

ci (q; d i ); � i (q) = F1(ẑ i ; d i );

wherewj = dj
P

k dk , dj = 1
kv j

i � qk2
with j 2 N q

k , andd i

denotes the camera view direction. Finally, we render the
output image with volumetric rendering formulation as in
vanilla NeRF [30] given the camera rayr (t) = o + td:

C i (r ) =
Z t f

t n

T(t)� i (r (t))ci (r (t); d) dt; (2)

whereT(t) = exp
�

�
Z t

t n

� i (r (s)) ds
�

To reduce misalignments caused by per-frame contents
that cannot be captured by 3DMM (e.g., 3DMM �tting er-
rors), we additionally learn error-correction warping �elds
during training inspired from prior works on deformable
NeRF [23, 45]. More speci�cally, we input the original
query point and a per-frame latent codeei , which is ran-
domly initialized and optimized during the training, into the
error-correction MLPsFE to predict a rigid transformation,
and apply it to the query point. The transformation is de-
noted asq0 = Ti (q) = FE(q; ei ). Then we use the warped
query pointq0 to decode the color and density. Note that
this warping �eld is disabled during testing. Please refer to
the supplementary for detailed formulations of the warping
�eld.

3.2. Predicting ExpressionDependent Features

While the proposed avatar representation (Sec. 3.1) en-
ables intuitive controllability and convenience in learn-
ing, it still has limited capability for modeling complex
expression-dependent variations due to the use of frame-
shared vertex featuresf z j g.

To overcome this, we propose to predict the dynamic ver-
tex featuresf z j

i g conditioned on the 3DMM expression and
pose ( i , � i ). A common practice for NeRF-based meth-
ods is to use MLP-based architectures for dynamic feature
prediction [3, 15, 53, 54]. However, we �nd that this leads
to blurry rendering results, presumably because of the lim-
ited model capacity due to the lack of spatial context (i.e.,
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