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It is a sunny day. 
It is a family 

picnic. There are 
four people, a 
basket, two 

apples, one cup, 
and two bananas 
on a picnic rug. 
There are two 

trees in the 
distance.

Fig. 1. A scene sketch from our dataset SketchyScene that is user-generated based
on the reference image shown, a segmentation result (middle) obtained by a method
trained on SketchyScene, and a typical application: sketch captioning.

Abstract. We contribute the first large-scale dataset of scene sketches,
SketchyScene, with the goal of advancing research on sketch under-
standing at both the object and scene level. The dataset is created
through a novel and carefully designed crowdsourcing pipeline, enabling
users to efficiently generate large quantities of realistic and diverse scene
sketches. SketchyScene contains more than 29,000 scene-level sketches,
7,000+ pairs of scene templates and photos, and 11,000+ object sketches.
All objects in the scene sketches have ground-truth semantic and instance
masks. The dataset is also highly scalable and extensible, easily allow-
ing augmenting and/or changing scene composition. We demonstrate
the potential impact of SketchyScene by training new computational
models for semantic segmentation of scene sketches and showing how
the new dataset enables several applications including image retrieval,
sketch colorization, editing, and captioning, etc. The dataset and code
can be found at https://github.com/SketchyScene/SketchyScene.
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1 Introduction

In the age of data-driven computing, large-scale datasets have become a driv-
ing force for improving and differentiating the performance, robustness, and
generality of machine learning algorithms. In recent years, the computer vision
community have embraced a number of large and richly annotated datasets
for images (e.g., ImageNET [1] and Microsoft COCO [2]), 3D objects (e.g.,
ShapeNET [3,4] and PointNET [5]), and scene environments (e.g., SUN [6] and
the NYU database [7]). Among the various representations of visual forms, hand-
drawn sketches occupy a special place since, unlike most others, they come from
human creation. Humans are intimately familiar with sketches as an art form
and sketching is arguably the most compact, intuitive, and frequently adopted
mechanism to visually express and communicate our impression and ideas.

Significant progress has been made on sketch understanding and sketch-based
modeling in computer vision and computer graphics recently [8,9,10,11,12,13,14].
Several large-scale sketch datasets [8,15,16] have also been constructed and uti-
lized along the way. Nevertheless, these datasets have all been formed by object
sketches and the sketch analysis and processing tasks have mostly been at the
stroke or object level. Extending both to the scene level is a natural progres-
sion towards a deeper and richer reasoning about sketched visual forms. The
ensuing analysis and data synthesis problems become more challenging since a
sketched scene may contain numerous objects interacting in a complex manner.
While scene understanding is one of the hallmark tasks of computer vision, the
problem of understanding scene sketches have not been well studied.

In this paper, we introduce the first large-scale dataset of scene sketches,
which we refer to as SketchyScene, to facilitate sketch understanding and
processing at both the object and scene level. Obviously, converting images to
edge maps [17] does not work since the results are characteristically different
from hand-drawn sketches. Automatically composing existing object sketches
based on predefined layout templates and fitting the object sketches into stock
photos are both challenging problems that are unlikely to yield a large quantity
of realistic outcomes (see Fig. 2(b)). In our work, we resort to crowdsourcing
and design a novel and intuitive interface to reduce burden placed on the users
and improve their productivity. Instead of asking the users to draw entire scene
sketches from scratch, which can be tedious and intimidating, we provide object
sketches so that the scene sketches can be created via simple interactive opera-
tions such as drag-n-dropping and scaling the object sketches. To ensure diversity
and realism of the scene sketches, we provide reference images to guide/inspire
the users during their sketch generation. With a user-friendly interface, partici-
pants can create high-quality scene sketches efficiently. On the other hand, the
scene sketches synthesized this way are by and large sketchy sketches [8,15] and
they do not quite resemble ones produced by professional artists.

SketchyScene contains both object- and scene-level data, accompanied
with rich annotations. In total, the dataset has more than 29,000 scene sketches
and more than 11,000 object sketches belonging to 45 common categories. In
addition, more than 7,000 pairs of scene sketch templates and reference photos
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(a) (b) (c) (d) (e) (f)

Fig. 2. (a) reference image; (b) response of edge detector; (c) synthesized scene using
object sketches from Sketchy and TU-Berlin (using the same pipeline as (f)); (d) non-
artist’s drawing with the hint of a short description; (e) artist’s drawing with the hint
of reference image; (f) synthesized scene using our system. Processes of (c)-(f) take 6,
8, 18, and 5 minutes, respectively.

and more than 200,000 labeled instances are provided. Note that, all objects
in the scene sketches have ground-truth semantic and instance masks. More
importantly, SketchyScene is flexible and extensible due to its object-oriented
synthesis mechanism. Object sketches in a sketch scene template can be switched
in/out using available instances in SketchyScene to enrich the dataset.

We demonstrate the potential impact of SketchyScene through experi-
ments. Foremost, the dataset provides a springboard to investigate an assort-
ment of problems related to scene sketches (a quick Google Image Search on
“scene sketches” returns millions of results). In our work, we investigate seman-
tic segmentation of scene sketches for the first time. To this end, we evaluated the
advanced natural image segmentation model, DeepLab-v2 [18], exploring the ef-
fect of different factors and providing informative insights. We also demonstrate
several applications enabled by the new dataset, including sketch-based scene
image retrieval, sketch colorization, editing, and captioning.

2 Related work

2.1 Large-scale sketch datasets

There has been a surge of large-scale sketch datasets in recent years, mainly
driven by applications such as sketch recognition/synthesis [8,16] and SBIR
[19,15]. Yet the field remains relatively under-developed with existing datasets
mainly facilitating object-level analysis of sketches. This is a direct result of
the non-ubiquitous nature of human sketches data – they have to be carefully
crowd-sourced other than automatically crawled for free (as for photos).

TU-Berlin [8] is the first such large-scale crowd-sourced sketch dataset which
was primarily designed for sketch recognition. It consist of 20,000 sketches span-
ning over 250 categories. The more recent QuickDraw[16] dataset is much larger,
with 50 million sketches across 345 categories. Albeit being large enough to facil-
itate stroke-level analysis[20], sketches sourced in these datasets were produced
by sketching towards a semantic concept (e.g., “cat”, “house”), without a ref-
erence photo or mental recollection of natural scene/objects. This greatly limits
the level of visual detail and variations depicted, therefore making them unfitting
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for fine-grained matching and scene-level parsing. For example, faces are almost
all in their frontal view, and depicted as a smiley in QuickDraw.

The concurrent work of [19] and [15] progressed the field further by col-
lecting object instance sketches for FG-SBIR. QMUL database [19] consists of
716 sketch-photo pairs across two object categories (shoe and chair), with refer-
ence photos crawled from on-line shopping websites. Sketchy [15] contains 75,471
sketches and 12,500 corresponding photos across a much wider selection of cat-
egories (125 in total). Object instance sketches are produced by asking crowd-
sourcers to depict their mental recollection of a reference photo. In comparison
with concept sketches [8,16], they by and large exhibit more object details and
have matching poses with the reference photos. However, a common drawback
for both, for the purpose this project, lies with their limited pose selection and
object configurations. QMUL sketches exhibit only one object pose (side view)
under a single object configuration. Scene sketches albeit exhibits more object
poses and configurations, are still restricted since their reference photos mainly
consists of single objects centered on relatively plain backgrounds (thus depicts
no object interactions). This drawback essentially renders them both unsuitable
for our task of scene sketch parsing, where complex mutual object interactions
dictate high degree of object pose and configuration variations, as well as subtle
details. For example, within a picnic scene depicted in Figure 1, people appear
in different poses and configurations with subtle eye contacts among each other.
Fig. 2(c) shows a composition result using sketches from Sketchy and TU-Berlin.

SketchyScene is the first large-scale dataset specifically designed for scene-
level sketch understanding. It differs from all aforementioned datasets in that
it goes beyond single object sketch understanding to tackle scene sketch, and
purposefully includes an assorted selection of object sketches with diverse poses,
configurations and object details to accommodate the complex scene-level object
interactions. Although the existing dataset Abstract Scenes [21] serves a similar
motivation for understanding high-level semantic information in visual data,
they focus on abstract scenes composed using clip arts, which include much more
visual cues such as color and texture. In addition, their scenes are restricted in
describing interactions between two characters and a handful of objects, while
the scene contents and mutual object interactions in SketchyScene are a lot
more diverse.

2.2 Sketch understanding

Sketch recognition is perhaps the most studied problem in sketch understand-
ing. Since the release of TU-Berlin dataset [8], many works have been proposed
and recognition performance had long passed human-level [11]. Existing algo-
rithms can be roughly classified into two categories: 1) those using hand-crafted
features [8,9], and 2) those learning deep feature representation [11,16], where
the latter generally outperforms the former by a clear margin. Other stream of
work had delved into parsing object-level sketches into their semantic parts. [22]
proposes an entropy descent stroke merging algorithm for both part-level and
object-level sketch segmentation. Huang et al. [23] leverage a repository of 3D
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template models composed of semantically labeled components to derive part-
level structures. Schneider and Tuytelaars [24] performs sketch segmentation by
looking at salient geometrical features (such as T junctions and X junctions)
under a CRF framework. Instead of studying single object recognition or part-
level sketch segmentation, this work conducts exploratory study for scene-level
parsing of sketches, by proposing the first large-scale scene sketch dataset.

2.3 Scene sketch based applications

While no prior work aimed at parsing sketches at scene-level, some interesting ap-
plications had been proposed that utilize scene sketches as input. Sketch2Photo [25]
is a system which combines sketching and photo montage for realistic image
synthesis, where Sketch2Cartoon [26] is a similar system that works on cartoon
images. Similarly, assuming objects have been segmented in a sketchy scene, Xu
et al. [27] proposed a system named sketch2scene which automatically generates
3D scenes by aligning retrieved 3D shapes to segmented objects in 2D sketch
scenes. Sketch2Tag [28] is an SBIR system where scene items are automatically
recognized and used as a text query to improve retrieval performance. With-
out exception, all aforementioned applications involve manual tagging and/or
segmentation of sense sketches. In this work, we provide means of automatic
segmentation of scene sketches, and demonstrate the potential of the proposed
dataset by proposing a few novel applications.

3 SketchyScene Dataset

A scene sketch dataset should reflect the scenes with sufficient diversity, in terms
of their configurations, object interactions and subtle appearance details, where
sketch should also contain multiple objects of different categories. Besides, the
volume of a dataset is important, especially in the context of deep learning. How-
ever, as previously discussed, building such dataset based on existing datasets
is infeasible, while collecting data from humans can be expensive and time-
consuming, therefore an efficient and effective data collection pipeline is required.

The easiest solution is to ask people to draw a scene directly with provided
objects or scene labels as hints (i.e., the strategy used in [8]). Unfortunately,
this method has proven to be infeasible in our case: (1) Most people are not
trained artists. As a result, they struggled to draw complex objects present in a
scene, especially when they are in different poses and object configurations (see
Fig. 2(d)); (2) although different people have different drawing styles, people
tend to draw a specific scene layout. For example, given the hint “several people
are playing on the ground, sun, tree, cloud, balloon and dog”, people always
draw the objects along a horizontal line. That makes the collected scene sketches
monotonous in layout and sparse in visual feature. (3) Importantly, this solution
is unscalable – it takes average person around 8 minutes to finish a scene sketch
of reasonable quality, where costing 18 minutes for a professional (see Fig. 2(e)).
This will prohibit us from collecting a large-scale dataset.
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Fig. 3. Representative object sketches of SketchyScene.

A new data collection strategy is thus devised which is to synthesize a sketchy
scene by composing provided object components under the guidance of a refer-
ence image. The whole process includes three steps.

Step1: Data Preparation. We selected 45 categories for our dataset, including
objects and stuff classes. Specifically, we first considered several common scenes
(e.g., garden, farm, dinning room, and park) and extracted 100 objects/stuff
classes from them as raw candidates. Then we defined three super-classes, i.e.
Weather, Object, and Field (Environment), and assigned the candidates into
each super-class. Finally, we selected 45 from them by considering their combi-
nations and commonness in real life.

Instead of asking workers to draw each object, we provided them with plenty
of object sketches (each object candidate is also refer to a “component”) as
candidates. In order to have enough variations in the object appearance in terms
of pose and appearance, we searched and downloaded around 1,500 components
for each category. Then we employed 5 experienced workers to manually sort out
the sketches containing single component or cutout individual component from
sketches having multiple components. For some categories with few searched
components (<20) like “umbrella”, components were augmented through manual
drawing. We totally collected 11,316 components for all 44 categories (excluding
“road”, which are all hand-drawing, and “others”). These components of each
category are split into three sets: training (5,468), validation (2362), and test
(3,486). Representative components of the 45 categories are shown in Figure 3.

In order to guarantee the diversity of the scene layout in our dataset, we addi-
tionally collected a set of cartoon photos as reference images. Through sampling
the class label(s) from each of our predefined super-classes, e.g., sun (Weather),
rabbit (Object), mountain (Environment), we generated 1,800 query items 1.
And around 300 cartoon photos were retrieved for each query items. After re-
moving the repeated ones manually, there are 7,264 reference images (4730 im-
ages are unique). These reference images are also split into three sets for training
(5,616), validation (535), and test (1,113).

Step2: Scene Sketch Synthesis. To boost the efficiency of human creators,
we devised a customary, web-based application for sketch scene synthesis. About
80 workers were employed to create scene sketches. Figure 4 shows the interface
of the application (named “USketch”).

1 We add another label “cartoon” to each query in order to retrieve cartoon photos
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Step 1: select a subject 
appeared in the reference image, 
then the program will randomly 
pick 12 candidates images

Step 2A: if no candidate images 
are available (e.g. road), sketch 
with the pen and eraser tool.

Step 2B: click a candidate image 
to add it into the scene; the user 
can move, scale, and rotate the 
candidate image to align with the 
reference image.

Repeat Step 1 and 2
to complete the user-
synthetized scene.

Fig. 4. Interface and work flow of USketch for crowdsourcing the dataset. See areas of
function buttons (upper left), component display (lower left), and canvas (right).

As explained before, we facilitated the creation of the sketchy scene images
by allowing the worker to drag, rotate, scale, and deform the component sketch
with the guidance of the reference image. The process is detailed in Fig. 4. It’s
worth noting that (1) we provided different sets of component sketches (even the
same category) to different workers, to implicitly control the diversity of object
sketches. Otherwise, workers tend to select the first several samples from the
candidate pool; (2) We required the workers to produce as various occlusions as
possible during the scene synthesis. This is to simulate the real scenarios and
facilitate the research in segmentation. Our server recorded the transformation
and semantic labels of each scene item of resulting sketchy scenes.

At this step, we collected one scene sketch based on each reference image, us-
ing the components from the corresponding component repository. We therefore
obtained 7,264 unique scene sketches. These unique scene sketches are further
used as scene templates to generate more scene sketches.
Step3: Annotation and Data Augmentation. The reference image is de-
signed to help the worker to compose the scene and enrich the layouts of the
scene sketches. However, the objects in a reference image is not necessarily in-
cluded in our dataset, i.e., 45 categories. In order to facilitate the future research
by providing more accurate annotations, we required workers to annotate the
alignment status of each object instance.

Given there are plenty of components in our dataset, an efficient data aug-
mentation strategy is to replace the object sketch with the rest components from
the same category. Specifically, we automatically generated another 20 scene
sketches for each worker-generated scene, and asked the worker to select the 4
most reasonable scenes for each scene template of Step2. Finally, we got 29K+
sketchy scene images after data augmentation.
Dataset Statistics and Analysis. To summarize, we totally obtain:

1. 7,264 unique scene templates created by human. Each scene template con-
tains at least 3 object instances, where the maximum number of object
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Fig. 6. From left to right: reference image, synthesized sketchy scene (“L” is used to
mark the category alignment), ground-truth of semantic and instance segmentation.

instances is 94. On average there are 16 instances, 6 object classes, and 7 oc-
cluded instances per template. The maximum number of occluded instances
is 66. Figure. 5 shows the distribution of object frequencies.

2. 29,056 scene sketches after data augmentation (Step 3);
3. 11,316 object sketches belonging to 44 categories. These components can be

used for object-level sketch research tasks;
4. 4730 unique reference cartoon style images which have pairwise object cor-

respondence to the scene sketches;
5. All sketches have 100% accurate semantic-level and instance-level segmen-

tation annotation (as shown in Fig. 6).

Extensibility. With the scene templates and sketch components provided in
the dataset, SketchyScene can be further augmented. (1) People can segment
each sketch component to get the part-level or stroke-level information; (2) The
sketch components can be replaced by sketches from other resources to generate
scene sketches with more varied styles.

4 Sketch Scene Segmentation

SketchyScene can be used to study various computer vision problems. In this
section, we focus on semantic segmentation of scene sketches by modifying an ex-
isting image segmentation model. Performance is evaluated on SketchyScene
to help us identify future research directions.

Problem Definition. In semantic segmentation, each pixel needs to be clas-
sified into one of the candidate classes. Specifically, there is a label space L =
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{l1, l2, ..., lK}, K refers to the number of object of stuff classes. Each sketch
scene image s = {p1, p2, ..., pN} ∈ RH×W contains N = W ×H pixels. A model
trained for semantic segmentation is required to assign a label to each pixel2.
So far the definition of sketch scene segmentation is identical to that of photo
image segmentation. However, different from photos, a sketch only consists of
black lines (pixel intensity value equals to 0) and white background (pixel value
equals to 255). Given the fact that only black pixels convey semantic informa-
tion, we define the semantic segmentation in sketchy scenes as predicting a class
label for each pixel whose value is 0. Taking the second image of Fig. 6 as an
example, when segmenting trees, house, sun and cloud, all black pixels on the
line segments (including contours and the lines within the contours) should be
classified while the rest white pixels are treated as background.
Challenges. Segmenting a sketchy scene is challenging due to the sparsity of
visual feature. First of all, a sketch scene image is dominated by white pixels.
In SketchyScene, the background ratio is 87.83%. The rest pixels belong to
K foreground classes. The classes are thus very imbalanced. Second, segment-
ing occluded objects becomes much harder. In photos, an object instance often
contain uniform color or texture. Such cues do not exist in a sketch scene image.

4.1 Formulation

We employ a state-of-the-art semantic segmentation model developed for photo
images, DeepLab-v2 [18], which is customized for segmenting scene sketches.
DeepLab-v2 has three key features, including atrous convolution, spatial pyramid
spatial pooling (ASPP), and utilizing fully-connected CRF as post-processing. It
is a FCN-based [29] model, i.e., adapting a classification model for segmentation
by replacing the final fully connected layer(s) with fully convolutional layer(s).
For each input sketch, the output is a K×h×w tensor, K represents the number
of class while h×w are the output segmentation dimension. A common per-pixel
softmax cross-entropy is used during training.

Among the three features, fully-connected CRF, or denseCRF, is widely used
in segmentation as a post-process. However, there are large blank areas in scene
sketches which should be treated differently. We show that directly applying
DeepLab-v2 to model the sketches results in inferior performance, and denseCRF
further degrades the coarse segmentation results (see Sec.4.2).

Based on the characteristics of sketchy scenes, we propose to ignore the back-
ground class during modeling. This is because (1) the ratio of background pixels
is much higher than the non-background pixels, which may introduce bias into
the model; (2) the background information is provided in the input image and
we can filter them out easily by treating the input as a mask after segmentation.
Specifically, in our implementation, the background pixels do not contribute to
the loss during training. During the inference, these background pixels are as-
signed a non-background class label, followed by a denseCRF for refinement.
Finally, the background pixels are filtered out by the input image.

2 In this study, we consider a sketch s as a bitmap image.
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Table 1. Comparison of DeepLab-v2 and other baselines (%)

Model
OVAcc MeanAcc MIoU FWIoU

val test val test val test val test

FCN-8s 83.38 73.78 62.82 57.80 45.26 39.16 73.63 60.16
SegNet 84.61 78.61 58.29 54.05 42.56 38.32 76.28 67.91

DeepLab-v3 92.71 88.07 82.83 76.40 73.03 63.69 86.71 79.19

DeepLab-v2(final) 92.94 88.38 84.95 75.92 73.49 63.10 87.10 79.76

4.2 Experiments

We conducted all the experiments on SketchyScene, using the set of 7,264
unique scene sketch templates which are split into training (5,616), valida-
tion(535), and test(1,113). Microsoft COCO is employed to verify the effective-
ness of pre-training.

Implementation details. We use Tensorflow and ResNet101 as the base net-
work. The initial learning rate is set to 0.0001 and mini-batch size to 1. We set the
maximum training iterations as 100K and the optimiser is Adam. We keep the
data as their original size (750×750), without applying any data augmentation
on the input as we are not targeting optimal performance. We use deconvolution
to scale the prediction to the same size as the ground truth mask. For denseCRF,
we set the hyper parameters σα, σβ , σγ to 7, 3, and 3, respectively.

Competitors. We compare four existing models for segmenting natural pho-
tos: FCN-8s[30], SegNet[31], DeepLab-v2[18] and DeepLab-v3[29]. FCN-8s is the
first deep segmentation model adapted from deep classification. It further com-
bines coarse and fine features from different layers to boost performance. Seg-
Net employs an encoder-decoder architecture which modifies the upsampling
process to generate a more accurate segmentation result. DeepLab-v2 employs
atrous convolution and denseCRF for segmentation, as explained in Sec. 4. Com-
pared with DeepLab-v2, DeepLab-v3 incorporates global information and batch
normalization, achieving comparable performance as DeepLab-v2 without em-
ploying denseCRF for refinement. In our experiment, FCN-8s and SegNet use
VGG-16 while both DeepLab-v2 and v3 use ResNet101 as the base network. For
fair comparison, we apply the same data processing strategy in all four models.

Evaluation Metrics. Four metrics are used to evaluate each model: Overall ac-
curacy (OVAcc) indicates the ratio of correctly classified pixels; Mean accuracy
(MeanAcc) computes the ratio of the correctly classified pixels over all classes;
Mean Intersection over Union (MIoU), a commonly used metric for segmenta-
tion, computes the ratio between the intersection and union of two sets, averaged
over all classes; FWIoU improves MIoU slightly by adding a class weight.

Comparison. Table 1 compares the performance of different baseline models on
the new task. Clearly, both DeepLab-v2 and DeepLab-v3 perform much better
than FCN and SegNet. However, DeepLab-v3 yielded similar performance as
DeepLab-v2, indicating that contextual information does not have much effect
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Table 2. Comparison of including/excluding background (%)

Model
OVAcc MeanAcc MIoU FWIoU

val test val test val test val test

with BG (train&test) 95.38 94.22 42.48 34.56 38.34 30.05 91.29 89.34
with BG (train) 90.21 86.41 73.54 66.49 61.50 52.58 82.67 77.09

w/o BG (final) 92.94 88.38 84.95 75.92 73.49 63.10 87.10 79.76

Table 3. Comparison of pre-training strategy (%)

Model
OVAcc MeanAcc MIoU FWIoU

val test val test val test val test

Variant-1 93.07 88.67 82.23 74.97 71.41 62.12 87.42 80.19
Variant-2 91.22 87.08 76.91 71.70 65.41 57.81 84.36 78.01
Variant-3 91.47 86.44 79.17 72.24 67.91 58.54 84.80 77.18

Pre-ImageNet (final) 92.94 88.38 84.95 75.92 73.49 63.10 87.10 79.76

Fig. 7. Visualizations of our segmentation results. Left: 6 examples with good segmen-
tation results; right: two failure cases.

for the task. This can be explained by the sparsity of sketchy scenes, and the fact
that the structures in a sketch are more diverse than those in natural photos.
Thus contextual information is less important than that in natural images.

Qualitative Results. Figure 7 shows several segmentation results generated
by DeepLab-v2 (each class is highlighted by a different colour). Although the
results are encouraging, there is still large space to improve. In particular, the
failure are mainly caused by two reasons: (1) The intra-class variation is large
while sketch itself is significantly deformed. For example, in the bottom image
of the fourth column of Fig. 7, the “sheep” (highlighted in purple) is classified as
a “dog” (highlighted in green); (2) occlusions between different object instances
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or instances being spatially too close. As shown in the top image of the fourth
column, “cat”, “human” and “sofa” are clustered together, making the pixels
in the junction part classified wrongly. Since sketches are sparse in visual cues
and we only utilize pixel-level information, it would thus be helpful to integrate
object-level information. Note that the second problem is more challenging and
sketch-specific. In photo images, pixels on the contours are typically ignored.
However, they are the only pixels of interest in the new task. Therefore, some
sketch-specific model design need to be introduced. For examples, some percep-
tual grouping principles [32] can be introduced to remedy this problem. See more
segmentation results in the Supplementary Material.

Effect of Background. As discussed earlier, the large area of background is the
key problem to be solved for sketchy scene segmentation. We propose to ignore
the background class during model training. When considering the background
class, it mainly affects two processes, modeling by deep network and refinement
by denseCRF. So we decoupled them and conducted the following experiments:
(1) withBG (train&test): considering the background during training the deep
model and applying denseCRF for refinement, and (2) withBG (train): only
consider the background during training but ignore this class for refinement,
i.e., when generating the coarse segmentation, the model assigns the background
class pixels a non-background class label and then feed it to denseCRF. Table 2
compares the performance. We can make the following observations: (1) The
performance measured in both Mean Accuracy and MIoU have a significant
improvement when excluding background as a class. The Overall Accuracy and
FWIoU drop since the accuracy on “background” class is much higher than
other classes; (2) The processing of background mainly affects the performance
of denseCRF. This is as expected because it infers the label for each pixel by
considering the neighbor pixels, thus the classes which have large ratio in the
images tend to spread out. Some qualitative results are shown in Fig. 8. From
the images shown in the second column, we can see with the refinement of
denseCRF, lots of pixels are merged into “background”. The last image shows
the result following our proposed data processing.

Effect of Pre-training. Our final model is pre-trained on ImageNet and fine-
tuned on SketchyScene. In this experiment, we implemented three pre-training
variants: (1) Variant-1: Based on the ImageNet pre-trained model, we fur-
ther pre-trained on the large-scale natural image segmentation dataset, i.e., Mi-
crosoft COCO, then fine-tuned on SketchyScene. (2) Variant-2: Instead of
pre-training on the natural images, we trained the model on edge maps extracted
from the COCO dataset. In this variant, the mask of each object is region-based,
i.e., with inner region pixels. (3)Variant-3: To simulate the target task, we fur-
ther remove the inner region pixels of the mask used in Variant-2. That is, the
mask covers the edges only, which is more similar to our final task. Table 3
shows: (1) pre-training on COCO does not help. This is probably due to the
large domain gap between the sketch and the natural photo. (2) Pre-training
on edge maps (no matter what kind of mask they use) does not bring benefits
either. Again this is due to the domain gap: different from sketches, edge maps
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GT withBG(train&test) w/o BGwithBG(train)

Fig. 8. Comparing segmentation results when including/excluding background (BG).

Fig. 9. Retrieval results. The corresponding reference image is highlighted by red box.

contain lots of noise. (3) Variant-3 outperforms Variant-2, which is as expected
since Variant-3 is more similar to our final task.

5 Other Applications using SketchyScene

In this section, we propose several interesting applications which are enabled by
our SketchyScene dataset.
Image retrieval. Here we demonstrate an application of scene-level SBIR,
which complements conventional SBIR [19,15,33] by using scene-level sketches to
retrieve images. Considering the objects presented in the sketches of SketchyScene
are not 100% aligned with the reference images (as explained in Sec.3), we se-
lected sketch-photo pairs whose semantic-IoU are higher than 0.5 (2,472 pairs
for training and validation while 252 for testing). Here semantic-IoU refers to
the category-level overlap between the scene sketch and reference image. We
develop a triplet ranking network similar to [19] by changing the base network
to InceptionV3 [34], and adding a sigmoid cross-entropy loss as the auxiliary
loss (this is to utilize the object category information to learn a more domain-
invarint feature). We report accuracy at rank1 (acc.@1) and rank10 (acc.@10)
inline with other SBIR papers. Overall, we obtain 32.13% on acc.@1 and 69.48%
on acc.@10. Fig. 9 offers an example qualitative retrieval results.
Sketch captioning and editing. Here we demonstrate two simple applications,
namely sketch captioning and sketch editing (illustrated in Fig. 10(b) and (c),
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(a) (b) (c) (d) (e) (f)

A chicken is crossing the road
A chicken is in the middle of the road A chicken is on the right side of the road

A yellow chicken is crossing a brown road, there are green trees, 
deep green mountain, white cloud, red sun, and an orange car. 

Fig. 10. Applications: captioning (b), editing (c), colorization (d), and dynamic scene
synthesis (d-f).

respectively). The assumption is, based on the segmentation results, with extra
annotations like image description, an image captioning model can be developed
based on SketchyScene. Furthermore, people can edit a specific object using
the instance-level annotations. As shown in Fig. 10(c), the “chicken” can be
changed to a “duck” while the other objects are kept the same. Both of these
two applications could be useful for children education.
Sketch colorization. Here we show the potential of using our dataset to achieve
automatic sketch colorization, when combined with the recognition and segmen-
tation engine developed in Sec. 4.2. In Figure 10(d), we show a colorization result
by assigning different colors to different segmented objects, taking into account
of their semantic labels (e.g., the sun is red).
Dynamic scene synthesis. Finally, we demonstrate a more advanced applica-
tion: dynamic sketch scene synthesis. We achieve this by manipulating our scene
templates to construct a series of frames which are then colorized coherently
across all frames. Fig. 10(d)-(f) depict an example, “chicken road crossing”.

6 Conclusion, Discussion, and Future Work

In this paper, we introduce the first large-scale dataset of scene sketches, termed
SketchyScene. It consists of a total of 29,056 scene sketches, generated using
7,264 scene templates and 11,316 object sketches. Each object in the scene is
further augmented with semantic labels and instance-level masks. The dataset
was collected following a modular data collection process, which makes it highly
extensible and scalable. We have shown the main challenges and informative
insights of adapting multiple image-based segmentation models to scene sketch
data. There are several promising future directions to further enhance our scene
sketch dataset, including adding scene-level annotations and text captions to
enable applications such as text-based scene generation.
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