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Fig. 1. Existing visual programming requires users to select nodes, conceive pipeline structure, and then
create the pipeline starting from an empty workspace. In contrast, InstructPipe facilitates users to build
interactive pipelines directly from text instructions.

Visual programming provides beginner-level programmers with a coding-free experience to build their
customized pipelines. Existing systems require users to build a pipeline entirely from scratch, implying that
novice users need to set up and link appropriate nodes all by themselves, starting from a blank workspace.
We present InstructPipe, an Al assistant that enables users to start prototyping machine learning (ML)
pipelines with text instructions. We designed two LLM modules and a code interpreter to execute our
solution. LLM modules generate pseudocode of a target pipeline, and the interpreter renders a pipeline in the
node-graph editor for further human-AI collaboration. Technical evaluations reveal that InstructPipe reduces
user interactions by 81.1% compared to traditional methods. Our user study (N=16) showed that InstructPipe
empowers novice users to streamline their workflow in creating desired ML pipelines, reduce their learning
curve, and spark innovative ideas with open-ended commands.
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1 INTRODUCTION

A visual programming interface provides users with a node-graph editor to program. As opposed to
writing code in a code editor, the node graph allows users to build a pipeline in a visual workspace
with nodes and edges. This approach effectively reduces technical barriers for users to prototype
creative applications. Advances in machine learning (ML) further stimulate growing interest in
visual programming. Open-sourced ML libraries (e.g., TensorFlow [1], PyTorch [40], and Hugging
Face [55]) provide users with various encapsulated modules to accelerate Al project development
and experimentation. Meanwhile, this also provides valuable protocols for visual programming
developers to create systems for ML applications [13], where ML practitioners can interactively test
“off-the-shelf” models on the node-graph editor. Recent foundational models like large language
models (LLMs) [3, 6, 50] and findings on Chain-of-Thought [54] further stimulate a community-wise
interest in visual programming [14, 56, 58], which provides users interactive experiences to explore
Al chains.

Despite the development of visual programming platforms in various domains, we observed
that existing systems share one similar characteristic: users usually start a creative process in the
workspace “from scratch”. This implies that users need to 1) select nodes, 2) ideate the pipeline
structure, and finally, 3) connect nodes from a completely empty workspace. For users who are
unfamiliar with a particular visual programming platform, such processes can easily overwhelm
them, degrading their overall programming experience.

Similar issues also exist when users write programs using text-based editors (there exist many
built-in functions in a particular programming language and multiple variables in a program), but
advances in LLM assistants show that such challenges can be effectively reduced. For example,
GitHub Copilot [15] makes it possible for users to generate code by simply describing users’
requirements in natural language. Even though the generated code is not absolutely correct, the Al
assistance usually finishes a large portion of the task, and programmers may only need to make a
few edits to achieve a correct result. To this end, we raise the following questions that motivate our
work: How can we build such an assistant to benefit visual programming users?

In this paper, we built InstructPipe, an Al assistant for visual programming users to generate a
pipeline through natural language instructions (Figure 1). We implemented InstructPipe on Visual
Blocks [13], a visual programming system for prototyping ML pipelines. One major technical
challenge in implementing InstructPipe lies in the lack of visual programming data. Different
from the standard approach to building a copilot for the text-based editor (i.e., training LLMs
using large-scale text-based programs online), it is impractical to collect sufficient data for a
particular visual programming platform. We addressed this issue by decomposing the generation
process into three steps. Using two separate LLM modules, the system first scopes the potentially
useful nodes and then generates pseudocode for a target pipeline. InstructPipe then compiles the
pseudocode and renders the pipeline on the node-graph editor to facilitate further user interaction.
Our technical evaluation suggests that InstructPipe reduces user interactions by 81.1% compared
to building pipelines from scratch. Our system evaluation with 16 participants demonstrated that
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InstructPipe significantly reduced users’ workload in their creative process. Qualitative results
further reveal that InstructPipe effectively supports novices’ on-boarding experience of visual
programming systems and allows them to easily prototype a concept for various purposes. As
one pioneering work on visual programming copilot, we also observed new challenges caused by
humans’ cognitive characteristics and proposed future technical directions toward a next-level,
open-ended Al prototyping assistant.

In summary, this work offers the following contributions:

(1) InstructPipe, an Al assistant that enables users to build ML pipelines from human instructions,

(2) System design and technical development of InstructPipe, which includes two LLM modules
and a code interpreter that generate codes for a visual programming pipeline, compile the
code, and render the pipeline in an interactive node-graph editor,

(3) A technical and a user evaluations that demonstrate effectiveness of InstructPipe, and the
corresponding findings that reveal new challenges for the HCI community.

2 RELATED WORK
2.1 Visual Programming

A computer program defines the operation of computer systems. However, “the program given to a
computer for solving a problem need not be in a written format” [48]. This future-looking statement,
dating back to the 1960s, inspired several generations of researchers to design and build visual
programming systems.

Today, visual programming systems (e.g., LabView [26], Unity Graph Editor [49],
PromptChainer [56], and Visual Blocks [13]) typically feature a node graph editor, providing users
with a visual workspace to “write” their program by “building blocks” [19, 45]. Recent work further
explored the application of visual programming in education [24, 27], authoring support [62, 63],
and robotics [9, 21, 22]. For example, Zhang et al. [63] connected the visual programming tool
to the concept of teaching by demonstration [30, 34, 66], allowing users to rapidly customize AR
effects in video creation. FlowMatic [62] extended traditional visual programming interfaces into
3D virtual environments, providing users with immersive authoring experiences.

More recently, findings on LLM Chains [58] and Chain-of-Thought [54] further stimulated
researchers to build visual programming tools that chain LLM modules. Developers want to
explore various ways to chain an LLM module for various applications. In such a scenario, visual
programming provides a great platform for users to focus on high-level exploration. Example
research work and industrial products include PromptChainer [56], LangFlow [29], and ComfyUI [8].

This work offers technical contributions of implementing and evaluating an Al assistant that
supports users to prototype an Al visual programming pipeline from text-based instructions.
Compared to a mainstream user workflow in which people begin their creation from scratch,
InstructPipe provides a new experience for beginner-level users to easily prototype a pipeline.

2.2 LLMs and Their Applications in Interactive Systems

Early multimodal ML work uses language models to solve Visual Question Answering (VQA) [2, 4],
yet these solutions are limited to simple questions and cannot perform effective reasoning and
problem solving [33]. LLMs revolutionized AI’s reasoning capability [54, 65] in language, which
motivate researchers to build LLM applications in various domains beyond NLP [38, 43, 47]. For
instance, LLMs augmented the perceptual and planning intelligence in robotics [43], supported
autonomous driving [31], and assisted clinical processes in medical science [28, 44].
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(b) InstructPipe’s visual programming interface.
Fig. 2. The user interface of InstructPipe. The user can first click on the “InstructPipe” button on the top-right
corner of the interface in (b). A dialog will appear, and the user can input the instruction and select a category
tag. InstructPipe then renders a pipeline on (b), in which the user can interactively explore and revise.

The advances in LLMs empower recent interactive systems [39, 41] with enhanced machine
intelligence. Recent research leverages LLMs to edit visualization [42, 53], receive Al explana-
tion [57], facilitate communications [32], understand user interface [52], and study simulated
social behaviors [38]. The revolution also motivated HCI researchers to design new interfaces for
LLMs [25, 46]. Graphologue [25] augmented LLM responses by displaying interactive diagrams
along with the response text, which depicts the semantic logic in a paragraph. Sensecape [46]
provides users with a workspace to explore long LLM responses in a hierarchical structure.

InstructPipe focuses on utilizing LLMs for generating pipelines in visual programming with
human instructions [20, 47]. This work shares a similar vision with Prompt2Model [51] and
VisProg [16]. Prompt2Model [51] finetunes a BERT model [10] using data generated by instructions.
VisProg [16] produces Python code from instructions with task-dependent few-shot prompting.
However, prior arts focus on full Al automation and lack an interactive workspace for human-Al
collaboration. In contrast, InstructPipe generates and compiles a pipeline (without finetuning), while
rendering the pipeline in a visual programming interface, facilitating an interactive, collaborative,
and explainable workflow.

3 INSTRUCTPIPE

InstructPipe is an Al assistant that enables users to generate a visual programming pipeline by
simply providing text-based instructions. We implemented InstructPipe on Visual Blocks [13], a
visual programming system for prototyping ML pipelines.
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Fig. 3. An overview of major primitive processor nodes supported by InstructPipe. 17 of the 20 processor
nodes are categorized by the type of accepted 1/0 into a 3 X 3 matrix. Note that “PaLM” represents two nodes
in InstructPipe, i.e., a text generation model and a chat model of PaLM [3].

3.1 User Workflow

To generate a pipeline, users can first click the “InstructPipe” button on the top-right corner of the
interface (Figure 2b). The system then activates a simple dialog (Figure 2a) in which users can 1)
provide a description of their target pipeline and 2) tag the pipeline. The tag can be “language”,
“visual”, or “multimodal”. After users click the “Submit” button in the dialog, InstructPipe renders a
visual programming pipeline on the node-graph editor. Based on the result, users can further refine
the pipeline in the visual programming interface.

3.2 Primitive Nodes

InstructPipe supports 27 primitive nodes in Visual Blocks, including seven I/O nodes (e.g., live
camera and markdown viewer) and 20 processor nodes. Appendix A provides a description for each
of the 27 nodes. Compared to related work [16, 47] that automates ad hoc ML inferences in specific
use scenarios, we aim at an open-ended use case with diverse primitive nodes. Figure 3 visualizes
17 (out of 20 in total) processor nodes according to the I/Os of the nodes. The remaining three
nodes are “Google Sheet” (which takes a Google Sheet URL as input and outputs the sheet data),
“image_mixer” (which combines multiple images), and “virtual_sticker” (which casts a sticker on
a person’s face on a live camera). “Metadata” in Figure 3 indicates intermediate data used in ML
pipelines, which can be a segmentation mask that describes an input image, or a URL that describes
a target news that users want to read. As shown in the matrix, InstructPipe contains a wide range
of nodes that supports the creation of complex ML pipelines.

4 PIPELINE GENERATION FROM INSTRUCTIONS

InstructPipe leverages LLMs to generate visual programming pipelines from text instructions.
There exist two prevailing approaches for customizing LLMs: 1) fine-tuning LLMs [5, 32], and
2) few-shot prompting [12, 38]. For our task, fine-tuning LLMs requires a substantial volume of
annotated data comprising pairs of pipelines and prompts. Additionally, a growing list of nodes
poses new challenges to scaling this approach with new data annotations. In comparison, few-shot
prompting can seem more practical [16, 54, 59], but it is challenging to design an efficient prompt
that fits within a reasonable number of tokens. The configuration file of the 27 nodes alone includes
8.2k tokens. Moreover, because of the combinatorial explosion of the 27 nodes in the system, it is
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identify a relevant set of nodes. Subsequently, both the instructions and the relevant nodes with their
description are input into a code writer to produce pseudocode. Finally, a code interpreter parses the

pseudocode, rectifies errors, and compiles a JSON-formatted pipeline, allowing users to refine and interact
with it further within Visual Blocks’s node-graph editor.
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(a) Pipeline.

###InpUtHHE

input_image_1: input_image();
s input_text(text="caption this image in detail");

###Output###
image_viewer_1: image_viewer(images=imagen_1_out);

###Processor###

pali_1_out = : pali(image=input_image_1,
prompt=input_text_1);

imagen_1_out = imagen_1: imagen(text=pali_1_out);

(b) pseudocode.
Fig. 5. A pair example of pipeline and pseudocode. In the first line of code under “processor”, pali_1_out,
, pali and image=input_image_1, prompt=input_text_1 represents output variable id, , node

type, and node arguments, respectively.

not clear how many prompt examples are needed and how we can construct in-context pipeline
examples.

To this end, we implement InstructPipe with a two-stage LLM refinement prompting strategy,
followed by a pseudocode interpretation step to render a pipeline. Figure 4 illustrates the high-level
workflow of the InstructPipe implementation. InstructPipe includes two LLM modules (highlighted
in red): 1) a Node Selector (§4.2) and 2) a Code Writer (§4.3). Given a user instruction and a pipeline
tag, we first devise the Node Selector to identify a list of potential nodes that would be used
according to the instruction. In the Node Selector, we prompt the LLM with a very brief description
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of each node, aiming to filter out unrelated nodes for a target pipeline. The selected nodes and the
original user input (the prompt and the tag) are then fed into the Code Writer, which generates
pseudocode for the desired pipeline. In Code Writer, we provide the LLM with detailed description
and examples of each selected nodes to ensure LLMs have a thorough understanding of each
candidate node. Finally, we employ a Code Interpreter to parse the pseudocode and render a visual
programming pipeline for the user to interact with.

4.1 Pipeline Representation

The Visual Blocks system represents a pipeline as a Directed Acyclic Graph (DAG) in JSON format!.
To compress the verbose JSON file, InstructPipe represents pipelines as pseudocode [16, 47], which
can be further compiled into a JSON-formatted pipeline. The pseudocode representation is highly
token-efficient. Figure 5 shows an example in which the pseudo compresses the JSON-based pipeline
representation (2.8k tokens) into a 123-token pseudocode representation. The efficiency does come
with a cost: it loses some fine-grained annotations of each node like property values (e.g., layout
of the nodes, parameters of a segmentation model, and the degree of blurring parameters in an
“image processor” node). InstructPipe leaves the task of finetuning these parameters to the user and
focuses on generating the graphic structure of a visual programming pipeline.

Figure 5 provides an example of a pipeline (Figure 5a) and its corresponding pseudocode
(Figure 5b). The syntax design is inspired by TypeScript. The structure is inspired by how academic
papers present pseudocode [64]: an algorithm block typically starts with specifying the input/output
and then explains the intermediate processor. We highlight the first line under the processor module
(i.e., the operation of the PaLl node) in Figure 5b in four different colors, representing four different
components in the programming language. “pali_1_out” represents the output variable name of the
node. ” is the unique ID of the node. The green symbol after the colon, i.e., “pali”, specifies
the type of the node. In this example, the node with the ID of “ ” is a “pali” node. The rest
part in the bracket, i.e., “image=input_image_1, prompt=input_text 1", defines the arguments of
the nodes. In the input pseudocode, we do not annotate the output variable (i.e., there are no red
colors in the highlighted line under the input module) because all the input nodes only export one
value, and the output variable name is automatically annotated as the same symbol as the node id
(ie, ”). Note that InstructPipe generates the text input (i.e., the property value) in the
“input text” node. Therefore, the argument in “text="caption this image in detail”” does not indicate
that the “input_text” node accepts input edges, but accepts the node property input.

4.2 Node Selector

Node Selector aims to filter unrelated nodes by providing an LLM with a short description of each
node. Figure 6 shows the prompt we use in Node Selector. Followed by a general task description
and guidelines, we list all the node types with a short description that explains the function of the
node. Several nodes come with recommendation(s) when the users interact with Visual Blocks,
and we also include such node recommendations information in the prompt. The main intuition of
this prompt design is based on how the existing open-source libraries (e.g., Numpy [17]) present
a high-level overview of all functions?. The documentation typically presents a list of supported
functions (in each category), followed by a short description so that developers can quickly find
their desired functions. At the end of the prompt, we provide a list of Q&A as few-shot examples to
support the LLM to learn and adapt to the context of the task.

1Pipeline in JSON files: see supplementary materials for examples.
2See an example in the following link: https://numpy.org/doc/1.25/reference/routines.array-manipulation.html
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You are an assistant tasked with aiding the user in constructing an Al
pipeline.

For this assignment, select a small set of nodes to fulfill the user's
pipeline request.

Guidelines:

1. In your selection, include at least one node from each category:
‘input’, 'processor’, and ‘output'.

2. Ensure you incorporate all necessary nodes. Opting for a few
additional nodes, if required, is acceptable.

3. Limit your selection to a maximum of 10 nodes.

Below are the nodes you may select from:
###input###
live_camera: Capture video stream through your device camera.

###output###
image_viewer: View images.

###processor##t#
google_search: Use Google to search web that returns a list of URLs

Zhou et al.

You are a programmer responsible for helping the user design an Al
pipeline.

Upon receiving a concise description from the user about the
desired functionality of the pipeline, you should generate the whole
pipeline using pseudo codes.

Guidelines:

1. Respond solely in pseudo codes, without additional commentary.
2. Utilize ONLY the nodes listed below; introducing new nodes is not
permitted.

3. Ensure there's a minimum of one line in each pseudocode
category: 'input’, 'output’, and 'processor'.

Below are the nodes you can incorporate into the pipeline:

The following is a full list of nodes you may also use but those not
included above are not recommended:

based on a given keyword; usually selected with string_picker.

Examples:
Examples: -
Q: {'description": 'generate a photo and validate whether it is real or
{'description’: 'generate a photo and validate whether it is real or generated., 'tag": 'multimodal’}
generated.', 'tag": 'multimodal’} A
A

['input_text', 'markdown_viewer', 'imagen’, 'pali']

Fig. 6. The prompt structure for the Node Selec- Fig.7. The prompt structure for the Code Writer mod-
tion module. Each node description is formated ule. Detailed node configurations, see supplementary
as "{node types}: {short descriptions of the nodes}; materials for examples, are listed in the highlighted
{recommended node(s)}". The node recommendation
is optional.

4.3 Code Writer

With a pool of selected nodes, the Code Writer module can write pseudocode for rendering a target
pipeline. Figure 7 shows the structure of the prompt utilized in this LLM module. Similar to §4.2,
the prompt starts with a general introduction and several guidelines. The major difference in the
prompt design in this stage lies in the granularity of each node introduction. We provide a detailed
configuration for each selected node with additional information, including 1) input data types, 2)
output data types, and 3) an example, represented in pseudocodes, showing how this node connects
to other nodes. We put a detailed explanation of the full node configuration in the supplementary
materials. Similar to the previous LLM module (§4.2), the prompt design here is also inspired by the
documentation of several popular code libraries. Specifically, we gain inspiration from low-level
function-specific documentation®, which typically includes a detailed description and data types in
the input/output, followed by one or more examples of how developers can use this function with
a few lines of codes.

The prompt also includes a list of Q&A as few-shot examples. However, providing few-shot
examples in this stage is non-trivial. The reason lies in the dynamics of the node selection pool: a
combination of all the nodes causes many possible selections, and it is impossible to design a list of
few-shot examples for each possibility. Therefore, we only created an example list for each pipeline
tag (i.e., “language”, “visual”, and “multimodal”) and intended to utilize these few-shot examples
to cover most of the use cases. The intuition behind this design is: the in-context examples serve
to list possible creative ideas of the pipelines in each tag, which can be condensed into few-shot
examples rather than traversing all the possible combinations. This implies that the in-context
examples may include nodes that are not selected in the prompts. According to our preliminary

region.

3See an example in numpy.shape: https://numpy.org/doc/1.25/reference/generated/numpy.shape. html#numpy-shape
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(a) Before layout optimization. (b) After layout optimization.
Fig. 8. A comparison of the same generated pipeline before and after layout optimization. (a): Each node is
assigned with a default property value when convert pseudocode into a JSON file for rendering the pipeline.
Such default values will cause sub-optimal visual effects. (b): Our layout optimization process re-arranges the
layout for better presentation of the pipeline.

tests, such out-of-scope nodes cause negative effects on the generation results: LLMs tend to also
“invent” new nodes that do not exist in our system, causing failure in node rendering. Note that
we also observed this issue when combining the prompts used in [16]. We eliminate this issue by
using the prompt contents between the node configurations and the in-context examples (i.e., the
contents start with “the following is a full list of ..” in Figure 7). This aims to inform LLMs of the
exceptions for invention.

4.4 Code Interpreter

Finally, InstructPipe employs a code interpreter to parse the generated pseudocode and compile
a JSON-formatted pipeline with an automatic layout. We delineate the graph compilation and
rendering procedure below:

(1) Lexical Analysis: InstructPipe first tokenizes each line of the pseudocode is into output
variable id, , node type, and node arguments (§4.1).

(2) Graph Generation: The tokenized results allow us to build a graph structure in a node-
graph editor that connects each node as specified by the pseudocode. We then generate
JSON-formatted code, which Visual Blocks uses to render the pipeline in the node-graph
editor. Note that the JSON code includes far more parameters than those used in InstructPipe
for defining the graphic structure. InstructPipe fills texts in the “Input Text” node based
on LLM-generated pseudocode and uses default values for the rest nodes. For example, by
default, the temperature and the max output tokens for the PaLM node are set to 0.5 and 256,
respectively. If users are not satisfied with the default values, they can interactively adjust
the parameters in the node-graph editor.

(3) Graph Rendering and Optimization: A problem with employing the default parameters
is that it results in a chaotic distribution of nodes in the node-graph editor: each node is
located in a predefined position, and the edges go across the workspace without a reasonable
arrangement. Therefore, InstructPipe traverses the graph with a breadth-first search (BFS)
and arranges the nodes based on their depth values in the DAG. As shown in Figure 8, such
post-processing can effectively enhance the visualization of a generated pipeline.

Our exploration shows that LLMs may not always generate accurate code as expected. One typical
issue is that Code Writer tends to invent illegal nodes out of our library of 27 nodes. To address
this, InstructPipe disposes such lines that leverage illegal nodes. If legal nodes use the output of
such an illegal node, InstructPipe discards the edge connection between them to prevent bugs
when running the pipeline. Another common issue is that the generated code may not have a
correct order. For example, the generated code may be “Line 1; Line 3; Line 4; Line 2;”, in which
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“Line 1 - 4” represents four lines of code, and the correct order should be from “Line 1” to “Line 4”.
Such ordering issues would cause an input value of the current line to become undefined, because
its definition is mistakenly placed afterward. We address this issue by stacking the line that is
not ready for execution, similar to graph construction by traversing an adjacency list. The Code
Interpreter runs in a loop to interpret the code until all legal lines in the stack become ready.

5 TECHNICAL EVALUATION

Evaluating our system is challenging. Ideally, the evaluation set should cover 1) diverse visual
programming pipelines (i.e., the pipeline factor) and 2) a variety of instructions created by different
individuals for each pipeline (i.e., the human factor). However, such a combination requires a
significant number of user evaluation sessions, which is impractical to deploy. For example, if
an evaluation set includes 50 pipelines and 20 instructions for each pipeline from 20 different
participants, it requires 1,000 user study sessions. Asking participants to attend multiple pipeline
creation sessions seems efficient, but it introduces new learning transfer effects to the study. The
learn effects usually require additional user study design with counterbalancing, which eventually
increases the total number of required sessions.

To address this issue, we decouple the two factors that cause variations by decomposing the
whole evaluation into two evaluation sessions. The major benefit of this design is that it allows
us to deploy the evaluation tasks with a reasonable workload while maintaining the rigorousness
of the whole evaluation. In our first evaluation session (i.e., technical evaluation), we focus on
understanding the technical performance of InstructPipe among a variety of pipelines. In the second
evaluation session (i.e., user evaluation), we control the pipeline factor and examine the human
factor by recruiting different participants for prototyping controlled pipelines. The first technical
evaluation provides crucial data on the “accuracy” of InstructPipe, which guides us to select such
representative pipelines with as little bias as possible. More importantly, the user evaluation further
allows us to understand how user experiences are affected under two conditions: with and without
InstructPipe.

In this section, we focus on explaining the first step of our evaluation, the technical evaluation,
and the following user evaluation is covered in the next section.

5.1 Data Collection

To conduct the technical evaluation, we first organized a two-day hybrid workshop with 23
participants, aiming to collect pipelines that Visual Blocks users build for their creative usage.
Six attendees claimed that they had prior experience in using Visual Blocks. At the beginning
of the workshop, we gave a 15-minute tutorial walking the participants through the nodes and
the pipeline-building process using Visual Blocks. After the tutorial, attendees created pipelines
independently. We required the participants to export the JSON file from Visual Blocks and upload it
to our Google Drive every time they finished a pipeline. We also emphasized that they should caption
their pipelines when they export the files. Such data pairs (pipeline/caption) by the participants
constitute important raw data we use for the technical evaluation.

Note that Visual Blocks includes more primitive nodes than the 27 nodes covered by InstructPipe.
The workshop is an open-ended creation process, in which participants are free to any node
available in Visual Blocks. The InstructPipe feature was not available in the workshop.

5.2 Data Post-Processing

After the workshops, one author carefully examined each collected pipeline and found several
critical issues in the raw data:
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Fig. 9. Example pipelines participants built in the workshops.

e Incomplete pipelines. There exist pipelines uploaded by the participants that were
incomplete.

e Isolated graphs. There exist pipelines that include at least one isolated subgraph. The
isolated subgraph, as opposed to the main graph, is defined as a graph (or a node) that has
no connection to the main graph in the pipeline that provides the main functionality of
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the pipeline. The “Image viewer” node on the bottom-left corner of Figure 8b We observed
that some participants typically would like to explore the system by working on a separate
sub-space. While we acknowledge its usefulness, leaving such “redundant” graphs in the raw
data for the evaluation would cause issues when we calculate the number of user interactions
(i.e., the metric used in the evaluation that will be defined in the next subsection).

e Low-quality captions. While we explicitly required the participants to write descriptive
captions, we found some captions written by the participants were either empty or low-quality

5 .

(e.g., “newsletter”, “image editing” and “[participant name]-demo”).

The observation motivated us to post-process the raw data to present more rigorous evaluation
results. We first removed incomplete pipelines and the isolated graphs in each pipeline (if there are
any). Although the low-quality captions may reflect real-world scenarios on how the users may
use our system, such a hypothesis cannot be officially validated. In our data collection process,
participants are situated in the scenarios of writing captions instead of instructing an Al assistant.
When users generate instruct pipelines, they may be aware of the importance of writing good
instructions, and thus, such low-quality captions would not be as usual. More importantly, the
technical evaluation focuses on considering the variation of the pipeline, instead of text instructions.
In the next user evaluation (§6), we will explicitly situate a new group of participants in instructing
the assistant and observe the user behaviors and the variation of human instructions on the
same pipelines. Therefore, we were motivated to enhance the quality of the captions for fair
technical evaluations. Two authors individually annotated the caption of each pipeline separately
by referring to the original captions and pipelines authored by the participants. It is important to
note that we finished the workshop and the data annotation task before we completed the system
implementation. The two authors had no experience using InstructPipe before completing the
annotation. We believed this process could effectively enhance the quality of the captions while
maintain fairness of the technical evaluation.

As we clarified in §5.1, the workshop is designed to be an open-ended creation process. This
indicates that the dataset inevitably includes out-of-scope nodes like “custom scripts” (in which
the participants write code to process the input data and return custom outputs; see Figure 9b
for an example) and “TFLite model runner” (which call a custom TensorFlow model with a URL
input of the model in the TF-Hub). As we explained in §4.1, InstructPipe focuses on generating the
graphic structure of a pipeline without considering the property value within each node. Different
from the majority of nodes in Visual Blocks, nodes like “custom scripts” and “TFLite model runner”
derive their intrinsic functionality from the property values. Without this information, the entire
pipeline’s rationale is obscured. Therefore, we removed pipelines that contained “out-of-scope”
nodes in our technical evaluation.

The final 48 pipelines (out of 64 pipelines) are comprised of 23 language pipelines, seven visual
pipelines, and 18 multi-modal pipelines. Figure 9 shows three pipelines created by the participants.
Figure 9b is an example of the pipelines that include out-of-scope nodes, and therefore is not
included in the final 48 pipelines. In the technical evaluation, we ran our generation algorithm on
the pipeline captions six times (three times for each caption X two captions from two authors for
each pipelines) and evaluated the generation results using the metric that will be introduced below.

5.3 Metric: The Number of User Interactions

Evaluating a generated pipeline is more complex than other tasks that have a universally recognized
definition of accuracy. In this project, intuitively, an accurate generation implies that users only
need to do very few edits (or even no edits) based on the generated result. This intuition inspires
our definition of “the number of user interactions” as the core metric used in our evaluations:
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Table 1. The ratio of human interactions in the technical evaluation. Results are reported as mean + standard
deviation.

Overall Language Visual Multimodal

189 +£20.3% 17.4+20.6% 17.6=+23.7% 20.8+16.0%

The Number of User Interactions is defined as the minimal number of user interactions needed
to complete the pipeline from a generated pipeline.

Note that there are countless ways to modify a generated pipeline toward a complete pipeline
in practice. Nevertheless, the minimal number of user interactions, representing the “smartest”
way(s) to make a modification, is deterministic, and this is an objective metric that can fairly reveal
how many minimal efforts users need to spend to achieve their goal. A pipeline is considered
complete when it satisfies the given instruction. We calculate the number of interactions from the
sum of two events: 1) adding or deleting a node and 2) adding or deleting an edge between nodes.
Note that when a node with edges connected is deleted, our system will auto-remove these edges.
In such instances, we only register one interaction for the node deletion.

Our definition of the number of user interactions has two important implications. First, a complete
pipeline after user interaction does not need to be the same as the corresponding pipeline in the
dataset. As long as it fulfills the task described in the caption, we consider the pipeline complete.
Second, our definition does not consider interactions of modifying property values of a node, e.g.,
typing in a text box or selecting a value in a drop-down box. We argue that such interactions
are highly node-dependent and are hard to quantify objectively. More importantly, as we explain
in §4.1, the generation of property values is out of the scope of this work.

In the technical evaluation with various pipelines, it is unfair to report an averaged absolute
value of user interactions because the complexity of the pipelines varies dramatically. For instance,
the user may need three edits based on a generated result to complete a large pipeline that requires
20 edits from scratch. In another pipeline, the user also needs to do three edits starting from the
generated result, but the whole pipeline only takes three edits to finish. Averaging these absolute
values does not provide reasonable insights into how accurate the generation is. Therefore, we
reported an averaged ratio of user interactions required to complete a pipeline “from our generated
pipeline” to that “from scratch” as our target metric in the technical evaluation.

5.4 Results

Table 1 summarizes the results of the technical evaluation. Compared to building a pipeline from
scratch, InstructPipe allows the user to finish a pipeline with 18.9% of the user interactions (as
defined in §5.3), demonstrating the effectiveness of the InstructPipe support. Seven generated
pipelines directly satisfied with instructions without user interactions in all six trials, and 38
generated pipelines completed at least once in any of the six trials.

6 USER EVALUATION

While the technical evaluation demonstrates the accuracy of InstructPipe among various real
pipelines created by participants, it is still unclear what is the actual user experience when real
users go through the entire system workflow. Additionally, there is a lack of subject variation on a
controlled group of pipelines in the technical evaluation. Therefore, we conducted an in-person
user study of InstructPipe with another group of participants, aiming to provide more insights into
our system performance. The study recruitment was in accordance with the ethics board of our
institution. We obtained participant consent before the study began.
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Fig. 10. A flow diagram of the user study. After a training session, participants completed the two tasks in
each condition in the sequence determined by the counterbalancing protocol.

6.1 Study Design

In the user evaluation, we aimed to investigate how the interface condition (with InstructPipe
and without InstructPipe; the independent variable) affects the user experience and behaviors (the
dependent variable). We will refer to these two interface conditions as “InstructPipe” and “Visual
Blocks” in the following content. Figure 10 visualizes the complete study flow. In each condition,
participants completed the two pipelines with counterbalance (referred to as Task 1 and Task 2 in
Figure 10).

We carefully designed this study to ensure a fair study that can be completed with reasonable
efforts. The following elaborates how we made two important decisions that affected the
rigorousness of our study:

e Two controlled pipelines. Our user evaluation focuses on two controlled pipelines. While
we acknowledge more pipelines (e.g., four, six, or even more, instead of two in our design)
can enhance the solidness of the study, such design also dramatically increases the required
groups of the user study session. For example, counterbalancing four controlled pipelines
with two interface conditions results in 4! X 2 = 48 study orders. If there are four participants
for each unique order, the whole study requires 48 X 4 = 192 participants, which is far
more than a standard number in HCI system papers (i.e., recruiting 10 - 20 participants for
evaluation). We believe two pipelines fit the best in our case since they require 2! X 2 x4 = 16
participants.

e Pipeline selection. With the limited number of pipelines we can choose in the study,
it becomes highly important how we select the two pipelines. There are two critical
factors we considered in the pipeline selection process: representativeness and diversity.
The representativeness implies that the selected pipelines should represent the averaged
performance of InstructPipe. The diversity further suggests that the selected pipelines should
provide various experiences to simulate the actual use scenarios in which InstructPipe may
work well in some pipelines but not always. By following this guideline, we first selected
four candidates, and the final decision was made after a pilot study with one participant to
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test the level of pipeline difficulty. The two resultant pipelines are composed of eight nodes
with seven edges and six nodes with six edges, respectively. Using the instructions from two
authors, the averaged ratio of human interactions in these two pipelines are 27.8% and 5.2%,
respectively. See Appendix C for more details of the pipelines.

6.2 Procedure

The study starts with a 10-15 minute hands-on training of both conditions. The training included
1) all the Visual Blocks interactions needed to complete the subsequent steps of the experiment
and 2) all the nodes that participants need to use for creating the pipelines they are assigned in the
main sessions. Participants were also encouraged to try building a pipeline independently and to
ask questions.

After the training, participants progressed to an unmoderated session where they were asked to
build pipelines under the given conditions. We verbally described the pipelines to participants as
below, and participants are not allowed to read our scripts:

e Text-based pipeline: get the latest news about New York using Google Search and compile
a high-level summary of one of the results.

e Real-time multimodal pipeline: create a virtual sunglasses try-on experience using your
web camera.

During the task, participants were allowed to consult with us for technical help. If participants
were unable to make progress, we provided hints. We provided such support to ensure that each
participant spent a reasonable amount of time on each task and had sufficient time for the following
tasks. As shown in the results (§6.5.2), we provided far more support in the “Visual Blocks” condition.
Therefore, we argued that this is a fair moderation in the study because it favors our comparative
conditions (i.e., it makes it easier for users to finish the pipeline under the “Visual Blocks” condition).
As an optional extension to the study, eight participants were offered an open-ended pipeline
creation, where participants prototype their own ideas with InstructPipe. This optional section was
offered based on the progress of the participant in the previous sections and time constraints so
that the study duration was controlled within the time we guaranteed in our recruitment process.

After trying all pipeline-condition combinations, participants answered open-ended questions
in a semi-structured interview. The interview script is available in the appendix §D. Participants
provided their general outlook of each condition, listed pros and cons, identified potential future
use cases, and critiqued the user interface for future improvements.

In total, participants spent 55-65 minutes in the study.

6.3 Participants

We recruited 16 participants from an internal participant pool at Google. A diverse variety of job
profiles were represented, but no software engineers were included. See Table (Table 2) for a full
breakdown. Note that we intentionally recruited novice users, as we envision them as intended
users of InstructPipe. The criteria for selecting the novice users was based on self-evaluation ratings
of the below prompts:

e Please provide a self-evaluation of your programming experience
e Please provide a self-evaluation of your machine learning (ML) skillset

6.4 Metrics

In addition to the qualitative data from the interview, we measured the following quantitative data.
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Table 2. Participant demographics for the user study, showing various demographic characteristics and skills
relevant to InstructPipe.

D Job Title Self-identified  Age Programming Machine LLM
Gender Group Experience Learninig Skill Usage
P1 Product Manager Woman 25-34 Beginner Beginner At least once a month
P2 Image Tuning Engineer Man 35-44 Intermediate Beginner At least once a week
P3 Program Manager Woman 45-54  No experience  No experience At least once a week
P4 Hardware Engineer Man 35-44 Intermediate No experience At least once a month
P5  Technical Program Manager Man 35-44 Beginner No experience At least once a day
P6 Senior Hardware Engineer Man 35-44 Beginner No experience At least once a month
P7  Technical Program Manager Woman 18-24 Beginner Beginner Never used it
P8 Technical program manager Man 25-34 Noexperience No experience Multiple hours every day
P9 Solutions Engineer Man 25-34 Beginner No experience At least once a month
P10 Program Manager Man 55 - 64 Beginner Beginner At least once a month
P11 Program Manager Woman 35-44 No experience  No experience Never used it
P12 Lab Manager Man 35-44 Intermediate Beginner At least once a week
P13 Partner Development Manager Man 25-34 Beginner Beginner At least once a week
P14 Hardware Engineer Man 25-34 Beginner Beginner At least once a week
P15 Global Supply Manager Man 25-34 Beginner No experience At least once a month
P16 Global Supply Manager Woman 55-64 Noexperience  No experience At least once a week
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Fig. 11. Raw-TLX results. The statistic significance is annotated with *, **, or ***

and p<.001, respectively).

(representing p<.05, p<.01,

Table 3. Task completion time and the number of human interactions in the user study (N=16).

Svstem Time (secs) # Interactions
y Median  IQR p Median IQR p
InstructPipe 203.5 156.25 5.0 4.25
Visual Blocks 3045 12425 P =00 160 6o P00

6.4.1 Task Completion Time. Back-end logs were used to collect timestamps for starting and ending
events. Then, completion times for each condition were calculated per task for each participant.

6.4.2 The Number of User Interactions. We used the number of user interactions (introduced in
§5.3) to measure the user’s objective workload. Unlike the results in §5.4, we report an absolute
value here because all the pipelines are controlled in the system evaluation.

6.4.3 Perceived Workload. The raw task load index (Raw-TLX) questionnaire was used to measure
participant’s perceived workload [18]. This questionnaire was a subset of the NASA-TLX (part I).
Participants filled out the questionnaire after each condition (InstructPipe or Visual Blocks).
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6.5 Results

6.5.1 InstructPipe Reduces Users’ Workload. Table 3 shows the results of two objective
metrics measured in the study. The Wilcoxon signed ranks test found significant differences
on both scales (p < .001).

Figure 11 further visualizes the results of users’ perceived workload in six sub-scales. The
Wilcoxon signed ranks test revealed significant differences on five sub-scales, all but “Mental
Demand” (see §7.2 for more explanations and discussion). Furthermore, the test indicates that all
participants unanimously vote InstructPipe provides lower or equal workload on the subscales of
“Physical Demand”, “Temporal Demand”, “Performance” and “Effort” (W = 0). These quantitative
results, with both objective and subjective metrics, demonstrate that InstructPipe can effectively
reduce users’ workload during the pipeline creation process.

Users’ qualitative feedback is also aligned with our quantitative results. Participants
complimented that InstructPipe is “helpful”’[P16] and “obviously easier (to use) than [Visual
Blocks]”[P1]. P11 and P6 further elaborated how InstructPipe enhances the user experience when
the user builds a visual programming pipeline:

‘T feel like I can talk in natural language, and it (InstructPipe) can write the code for me.” [P11]

6.5.2 On-boarding Support of Visual Programming. P1, P5, and P9 explicitly mentioned that
there is a “learning curve” in the visual programming system for beginners, which validates our
statements in §1 that motivates this project.

“There is a learning curve to it (using the visual programming system) for sure, because you
have to, like, read each node carefully” [P1]

P1’s comment matches with our observation of participants’ behaviors during the study. In the
Visual Blocks condition, we observed that people were more easily stuck in their creative purposes,
which required our support*. Typical supports include 1) guiding participants if we notice they go
too far away from the correct pipeline and 2) reminding them of an important node for the pipeline,
although we introduced all the necessary nodes in our training session.

To this end, participants commented that InstructPipe is a good onboarding tool in visual
programming systems, especially for non-experts, to get familiarized with the system by having a
ready solution.

“[InstructPipe] lets you know these nodes exist [when the pipeline appears after the instruction].
It’s like a super speedy tutorial.” [P7]

“If you don’t have experience in visual programming, you will appreciate [InstructPipe] much
more ... With [InstructPipe], the structure is there, and I feel less worried about making mistakes.
It’s, like, giving you examples. It’s easier than starting from scratch.” [P5]

Anecdotally, three participants asked for InstructPipe during the Visual Blocks condition.

6.5.3 Integration into The Existing Workflow. InstructPipe is a feature available in Visual
Blocks. In the interviews, participants particularly expressed their strong appreciation of this design
as an Al assistant that enhances, instead of completely replacing, the existing user workflow (i.e.,
the creative process purely using the node-graph editor):

“In the whole study, we encouraged the users to talk to us while keeping their focus on their task. While we offer explicit
hints only when we consider a participant is stuck in an issue, it is still difficult to strictly define what conversation is
providing hints” and count them quantitatively. Therefore, we cannot fairly report quantitative data for “the number of
hints” in both conditions. Here, we faithfully report this finding based on our observation and experience.
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“[The pipeline generated by [InstructPipe] could be pretty close to what I want ... Or maybe
sometimes not, but that’s okay. I got most of the blocks there, and then it’s up to me to figure
out how to connect them.” [P6]

While most participants shared similar opinions with P6, P15 raised one concern about such
integration. The concern lies in the mental experience of the state that transits from the prompting
task to the node-graph editing process:

“Rather than fixing it (the generated pipeline) on my own [on the node-graph editor], I would
have gone back and changed my prompt ... I'm pretty sure I could have gotten it closer ...
because I just spent so much time figuring out what the prompt should be. That’s kind of like
already where my brain was and I knew that something was wrong there (the prompt), but
I would have to switch over to the other mode (visual programming) of figuring out what
was wrong on the pipeline.” [P15]

6.5.4 Use Scenarios: Accessible ML Prototyping and Education. In the open-ended session,
we observed participants could efficiently utilize InstructPipe to prototype a pipeline for various
daily life or business purposes. For example, P14 tried InstructPipe with “summarize real estate
price increase in San Diego California over 2023”. Compared to using LLM chatbots, InstructPipe
helps the user quickly build a more explainable pipeline in which the user can track (or modify)
the information resources. P4 prototyped an interactive VQA app by “Describe the product in the
camera”. P13 further shared his thoughts on how this rapid and accessible prototyping experience
can support future business:

“It (InstructPipe)’s going to facilitate the prototype building for PMs (Product Managers) ... I
was a PM ... Back then ... My biggest fear is to code ... I have lots of ideas, but my challenge
is how to translate an idea into the technical world and see a prototype. I think that this app
expedites me in that process a lot.” [P13]

Another emerging theme was regarding educating kids on programming as explained in the
following:

“With [InstructPipe], I don’t need to teach them (kids) to code for them to build something ...
Some kids like to code, some kids like to create stuff but don’t want to be bored with learning
the syntax of coding ... Using [InstructPipe], I can see kids can build, like, customized chat-bots
or interactive Wikipedia.” [P13]

6.5.5 Limitations and Future Directions. Across the study sessions, we consistently observed
a specific user behavior pattern: participants typically paused their pace when a generated pipeline
appeared in the workspace. At these times, some participants used soliloquy, as in saying “Let me
see”, while others kept a focused stare on the workspace. These human behaviors strongly indicate
that the participants were engaging in deep, contemplative thought.

This observation suggests that participants typically need to perceive a pipeline that appears in
the workspace. Such a sense-making process brings new challenges to their creative process:

“[Using InstructPipe] is a little mentally demanding ... I have to debug ... If it doesn’t help
(generating an almost 100% correct pipeline), I have to go through all the nodes ... I don’t like
debugging.” [P13]

Additionally, we observed that several participants spent more time crafting their prompts than
the others. P15 is the participant who spent the most time writing the prompt. The following
comments explain the reason, and how the prompting process causes extra mental workload to
him/her/them.
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‘T'm a relatively visual thinker ... Getting the prompt right requires me to think in a way that
is a lot more like precise and like getting it figured out without working it out live ... [When
writing prompts, | you’re just putting them (every detail in a whole pipeline) all out [in one
short prompt]” [P15]

In addition to the lack of the original visual thinking experience in visual programming, P13 also
warned that such simplification of the creative process into prompting experience may sacrifice
users” hands-on experiences:

“T'm very hands-on with techs. I would like to understand what’s going on [rather than
prompting LLMs to generate everything for me]. I want to like think for myself and then
compile all the information myself.” [P13]

7 DISCUSSION AND FUTURE DIRECTIONS
7.1 Human-Al Collaboration in Prototyping Open-ended ML Pipelines

Our technical evaluation (§5.4) shows that InstructPipe reduces the number of user interactions to
18.9 % (+20.3%). There are two implications from the results.

o InstructPipe automates most pipeline components with a single prompt.
e InstructPipe is not able to automate all the pipeline creation processes.

Such takeaways differ from existing findings that show LLMs can achieve full automation of ML
inference [16, 47]. The main reason is that existing work built their ad hoc solutions for target use
scenarios, respectively. In contrast, InstructPipe covers a wide range of mainstream ML models
(§3.2) and aims for an open-ended use case. Our results show that LLMs (i.e., GPT-3.5-turbo) still
fail to write robust code with prompt engineering techniques. As we mentioned in §4.4, the main
attribute of such failure is that LLMs tend to invent nodes (i.e., the node type in the pseudocode) that
do not exist in our node library, which causes execution error. Note that we explicitly instructed
the LLM that “introducing new nodes is not permitted” in the system prompt for the Code Writer
module (Figure 7). We also observed similar issues when we combined all the official prompts of
four scenarios in VisProg [16].

While the execution error in existing work indicates the failure of the full solution, InstructPipe
renders the executable components of the generation pipeline in a node-graph editor. This facilitates
a collaboration protocol between humans and Al in which humans do not need to start a project
from scratch. Results in §6.5.3 revealed that a wide range of participants appreciated this design of
human-Al collaboration. We believe the main reason behind this observation is that most non-expert
users prefer working on a task from a template (although sometimes it is not perfect) rather than
starting the whole project from scratch. The visual programming system provides non-experts
with a novice-friendly interface to work with Al in a visual platform. In this manner, “users can do
what matters most — building software by letting Al do the redundant work” [61].

7.2 Three Attributes to Mental Workload

While most participants are positive about our integration of InstructPipe into the existing user
workflow of Visual Blocks, results from the user evaluation also reveal several challenges in such
human-AI collaboration. Results in §6.5.1 show that InstructPipe failed to significantly reduce
novice users’ mental demand. We summarized its major causes into three aspects.

e Instruction. P15’s comment in §6.5.5 summarizes the first aspect that causes mental burden.
Although the “instruction-to-pipeline” process is fast and seems effortless, the process of
framing a prompt is one factor that may overwhelm users, especially those who are more
accustomed to visual thinking. In essence, an instructor of an LLM system (the user of
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InstructPipe) should be clear about the problem they want to solve and preferably what
pipeline they want, which causes a mental burden to the user. Zamfirescu-Pereira et al’s
study shows that non-experts may not prompt LLMs well [60], which further explains why
non-expert participants might find the instruction process mentally demanding.

e Perception. The integration of LLM supports into the visual programming interface enables
a “multimodal programming” experience [11], in which, users can program through both
verbal and visual approaches. Despite the enhanced flexibility of the system, it also causes
additional perceptual burden because users need to switch their “brain mode” between
“Visual thinking” and “text-based thinking”. This finding is aligned with Dual Coding Theory
(DCT) [36], in which Paivio hypothesized that human brains process information using two
different channels: verbal and visual. Interestingly, our results seemingly contradict with
multiple psychological findings based on DCT that show a combination of verbal and visual
information actually helps humans’ memory process [35, 37]. For example, people feel it
easier to remember a new word if they learn the word using a vocabulary card with a figure
that explains the texts. Based on these existing theories on humans’ mind processes, we make
the following explanation on the finding in our project: the cause of mental workload does not
imply that people dislike a multimodal workspace, but that users require a transparent interface
that connects humans’ mental model to the Al reasoning process, both verbally and visually.
When users frame the instruction in the InstructPipe dialogue, there is a lack of feedback
system from the Al assistant that visualizes how Al interprets the instructions in real time. As
a result, humans need to either first estimate the Al prediction or make no expectations when
they perform instruction. Even for experts, it is hard to accurately predict Al generation,
and thus, the generated pipeline is usually unexpected. This causes a sudden increase of
cognitive workload because users need to perceive an unexpected pipeline from scratch. That
being said, when users frame the instructions, the current interface design is purely based on
texts, and thus the visual channel in the user’s brain is off. When the generation is complete,
the user suddenly needs to switch on a sleeping (visual) channel, which causes a mental
workload. One possible approach to addressing this issue is to expose users to the multimodal
information while they are performing instructions. For example, future work can investigate
methods to visualize a generated pipeline on-the-fly when users are framing and typing their
instructions. In this manner, users’ mental models are continuously synchronized with the Al
assistant before the final generation, which should eliminate users’ cognitive burdens when
the final generation result appears.

e Debugging. When a rendered pipeline does not match with users’ expectations, users then
are required to debug the generated results (see P13’s comment §6.5.5). In essence, debugging
is one professional programming skill, which explains why it mentally overwhelms beginner-
level users. InstructPipe made the first step to facilitate users to 1) perceive the results and 2)
take actions on the results, i.e., two important elements in a debugging process, on the node-
graph editor. Results in our study reveal that this first step is insufficient to support users so
that users still feel like they are debugging the codes as professional programmers. Future work
should investigate how to further support users’ debugging process with visual programming
interfaces. For example, when execution fails, future work can consider visualizing messages
that provide cues on the possible issues and provide actionable guidance on the interface for
users to fix the issues easily.

On the other hand, it is important to note that we distill the attributes mainly from a subset of
participants who explicitly mentioned that they realized an increase in mental workload when using
InstructPipe. Those participants typically spent more time writing prompts and working on the
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(@ (b)
Fig. 12. A comparison of InstructPipe generated by two instructions: (a) “Edit an image by updating the image
caption”; (b) “Caption a tiger image using VQA, modify the character in the caption into a cat using LLM, and
finally generate a cat image based on the updated caption”. See Figure 9c for the complete pipeline.

node-graph editor than the average performance (e.g., P15 spent the most time ideating and writing
the instructions). Therefore, we argue that the aforementioned issues do not represent the average
user experience, and the issues are distilled from explicit comments on their negative experience.
In fact, we observed that most participants were relatively decisive and could quickly write their
instructions and modify a generated result in the node-graph editor. This observation aligns with
our qualitative results in Figure 11: the median score of “Mental Demand” in the InstructPipe
condition is lower than the baseline condition.

7.3 Instructing LLMs Poses Challenges for Both Novices and, Potentially, Experts

As we explained above, one reason that caused mental workload is that non-experts found it
challenging to instruct LLM. More interestingly, we found that even we, the inventors of InstructPipe,
failed to write optimal instructions. As mentioned in §5.2, two authors annotated captions for the
pipelines offline, and we observed multiple imperfections, especially for the complex ones. For
instance, the two captions of Figure 9c are “Describe the image and turn it into a cat image” and “Edit
an image by updating the image caption”. Neither caption explicitly describes the detailed pipeline
flow clearly, and therefore, all the six evaluation trials (§5) were incomplete (see Figure 12a for one
example). The average ratio of user interactions is 45.8%, more than twice the average value for
our multimodal pipelines (20.8%). To further understand the cause of the failure, another author
improved the instruction into “Caption a tiger image using VQA, modify the character in the caption
into a cat using LLM, and finally generate a cat image based on the updated caption”. The resulting
pipeline is significantly improved but still not perfect (Figure 12b). The user only needs to turn
“Imagen” into another mode so that it also accepts the input “image” node. Revisiting the improved
instruction, we instructed InstructPipe with “generate a cat image based on THE updated caption”,
which actually missed the input image.

The important takeaway is while natural languages are proven to be one promising
communication media that connects humans and Al systems [7, 52], instructions may not be
the best format to facilitate such connection. We believe the reason is that instructions are still not
intuitive to humans: Al typically requires flawless and unambiguous instructions while humans
tend to express their intention using ambiguous natural languages in conversations. We encourage
future work to investigate alternative interaction mediums beyond instructions to further enhance
user experience in human-Al collaboration.

7.4 Online InstructPipe

In this project, we made the following assumption: visual programming and its LLM support are both
offline. Note that InstructPipe does have connection to the Internet, and the “offline” here implies
that the system does not dynamically update its node library with online resources: every node is
pre-defined by the system developers. This statement shows one major limitation of InstructPipe
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we observed in the open-ended session of our user evaluation: the 27 nodes covered by InstructPipe
are insufficient to facilitate all the creative instructions from participants. For example, P9 prompted
InstructPipe using “giving me [an] image person walking [a] dog with webcam of myself”. After
some clarification, we found that P9 wanted to generate a video in which P9 is walking a dog by
taking the webcam as the input of P10’s visual appearance. Such a pipeline is infeasible in our
system because it requires a text-driven video generation model. While an extension of InstructPipe
with such a text-to-video model as a primitive node can solve this specific issue, we argue that,
in practice, users may request many more nodes for their customized uses. Therefore, it is rather
important for researchers to investigate a generalizable solution for issues of this category.

In this project, InstructPipe enables users to prototype an ML pipeline with human instruction,
and we focus our exploration on a fixed node library. An extension of InstructPipe to a system that
covers a wide range of possible online functions is still under-explored. With a next generation
of InstructPipe that can find ML models, define nodes and implement the node dynamically with
human instruction, we believe the aforementioned issues (e.g., the one raised by P10) can be
effectively addressed. In the past several years, the community has already established ML libraries
and API services for various models (e.g., by Hugging Face [23]). Such ecosystems provide crucial
resources for Al-oriented visual programming systems to dynamically define their primitive nodes,
and thus provide more powerful support for users. We encourage future work to investigate how
to build a model selector (similar to the Node Selector in Figure 4) that can intelligently select the
correct online API to be called in a node. We believe such “online InstructPipe” would provide
an unprecedented user experience in which researchers can brainstorm with the system, and
the system will automatically return a pipeline with state-of-the-art ML models to accelerate
researchers’ creative workflow.

8 LIMITATIONS

As discussed in the main content, we notice multiple limitations of InstructPipe. In our current
implementation, InstructPipe focuses on generating the graph structure in the pipeline (§4.1),
and therefore the system is not able to generate the property value of the nodes. In some nodes
like “tf-model-runner” that exist in Visual Blocks (but not covered by InstructPipe), such property
value plays a critical role that directly defines the functionality of the node. Additionally, when
InstructPipe detects an undefined generated node, it directly disposes of the line without leveraging
such information for other purposes (§4.4). In the evaluation, we were not able to conduct a
large-scale user study with thousands of user study sessions to understand the performance
of InstructPipe with both variations from the pipeline factors and the human factors (§5). Our
quantitative results show that InstructPipe fails to significantly reduce participants’ mental workload
(fig. 4). Qualitative results further validate this finding and reveal several issues that cause the
mental burden when users use InstructPipe (§7.2).

We also observe two major limitations of the project in addition to those discussed in the main
content of the paper. First, our user study participants only engaged InstructPipe in one hour,
and therefore, it is unclear whether users will still frequently use and appreciate InstructPipe
supports or similar Al assistants in general in a long-term manner. Additionally, all participants are
non-experts. Hence, we cannot verify the effectiveness of InstructPipe for users with other levels
of expertise. Second, InstructPipe currently cannot detect harmful data or misuse of AL We believe
such a feature is crucial, especially when future work builds “online InstructPipe”(§7.4), which
greatly enhances the generalizability of ML pipeline prototyping capability. Future work must
study effective methods to eliminate potential harmful uses when Al assistants become increasingly
open-ended.
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9 CONCLUSION

In this paper, we introduce InstructPipe, an Al assistant that facilitates users to build ML
visual programming pipelines with text instructions. We design and implement InstructPipe by
decomposing the task into three modules: a node selection module, a code writer, and a code
compiler. Results in our technical and system evaluations demonstrate that InstructPipe provides
users’ satisfactory “on-boarding” experience of visual programming systems and allows them
to rapidly prototype an idea. We further discuss the issues we observed concerning LLMs in
visual programming, related to both human factors and technical implementations. We hope that
InstructPipe will engage a diverse community to easily develop creative machine learning pipelines.
(10,369 words)
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APPENDIX
A A FULL LIST OF 27 NODES IN INSTRUCTPIPE

The following content shows 27 nodes InstructPipe covers in the generation process and their
corresponding short description used in the Node Selector (§4.2):

A.1 Input Nodes

(1) live_camera: Capture video stream through your device camera.

(2) input_image: Select images to use as input to your pipeline. You can also upload your own
images.

(3) input_text: Add text to use as input to your pipeline.

A.2 Output Nodes
(1) image_viewer: View images.
(2) threed_photo: Create a 3D photo effect from depthmap tensors.
(3) markdown_viewer: Render Markdown strings into stylized HTML.
(4) html_viewer: Show HTML content with styles

A.3 Processor Nodes

(1) google_search: Use Google to search the web that returns a list of URLs based on a given
keyword; usually selected with string_picker.
(2) body_segmentation: Segment out people in images; usually selected with mask_visualizer.
tensor_to_depthmap: Display tensor data as a depth map.
(3) depthmap: Display d depth map
(4) portrait_depth: Generate a 3D depth map for an image; usually selected with ten-
sor_to_depthmap, threed_photo.
(5) face_landmark: Detect faces in images. Each face contains 468 keypoints; usually selected
with landmark_visualizer, virtual_sticker.
ose_landmark: Generate bo ositional mappings for people detected in images; usua
6) p landmark: G body positional mappings for people d d in imag Ly
selected with landmark_visualizer.
7) image_processor: Process an image (crop, resize, shear, rotate, change brightness or contrast,
image_p P image (crop, resize, sh hange brigh
add blur or noise).
(8) text_processor: Reformat and combine multiple text inputs.
(9) mask_visualizer: Visualize masks.
(10) string_picker: Select one string from a list of strings; usually used with google_search.
(11) image_mixer: Combine images and text into one output image. Requires two image inputs.
(12) virtual_sticker: Use face landmarks data to overlay virtual stickers on images.
(13) palm_textgen: Generate Text using a large language model.
(14) keywords_to_image: Search for images by keywords.
(15) url_to_html: Crawl the website by a given URL.
(16) image_to_text: Extract text from an image using OCR service.
(17) pali: Answer questions about an image using a vision-language model.
(18) palm_model: Generate text using a large language model based on prompt and context.
(19) imagen: Generate an image based on a text prompt.
(20) input_sheet: Read string data from Google Sheets.

B SYSTEM PROMPTS USED IN LLM MODULES

Here we provide more details about the prompts we utilized in InstructPipe. The original txt files
are also attached in the supplementary zip file.
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{
“nodeSpecld": "body_segmentation",
"description": "Segment out people in images.”,
“category": “processor”,

"inputSpecs": {
“image": {
"type": "image"

2
"outputSpecs": {
"segmentationResult": {
"type": "masks",
"recommendedNodes": [
"mask_visualizer"
1

}

b
"examples”: [

"live_camera_xhjtec:
live_camera();\nbody_segmentation_xctd1p_out =
body_segmentation_xctd1p:
body_segmentation(image=live_camera_xhjtec);\nmask_visualizer_frjz
ga_out = mask_visualizer_frjzga:
mask_visualizer(image=live_camera_xhjtec,
segmentationResult=body_segmentation_xctd1p_out);

}

"description": "Answer questions about an image using a
vision-language model.",
"category": "processor”,
“inputSpecs": {
“image": {
"type": "image"

“prompt": {
"type": "string"

I3
"outputSpecs": {
"answer": {
"type": "string"
}

"examples": [

"input_image_f1ohfa: input_image();\ninput_text_04ejnm:

input_text(text=\"What is the person in the image

doing?\");\npali_2pzuwn_out = pali_2pzuwn:

pali(image=input_image_f1ohfa,

prompt=input_text_O4ejnm);\nmarkdown_viewer_éwqe86:

markdown_viewer(markdownString=pali_2pzuwn_out);\n"
1

}

(a) Body segmentation

(b) PaLl

Fig. 13. Examples of node configuration used in Code Writer. The configuration is structured in a JSON

format.

B.1 Node Selector

Please see our supplementary file (node_select.txt) for the full prompt we use in this stage.

B.2 Code Writer

The prompt in Code Writer is dynamic, which is dependent on the nodes chosen in Node Selector.
Therefore, we cannot provide all the possible prompts in the supplementary materials. Here, we will
focus on providing examples of two detailed node configurations utilized in InstructPipe. Figure 7
shows the structure of the prompt utilized in this LLM stage. Figure 13 provides two examples of
node configurations (i.e., “Body segmentation” and “PaLl”) that InstructPipe may chose into the
highlighted line(s). Each configuration includes keys of “nodeSpecld” (i.e., node types), “description”,
“category” and “examples”. For those nodes that support input and output edges, “inputSpecs” and
“outputSpecs” specify the sockets and their corresponding valid data types. For example, the output
socket name of “Body segmentation” is “segmentationResult”, and its data type is “masks”. Some
nodes (e.g., “Body segmentation”) include recommended node(s) (e.g., “Mask visualizer” for “Body
segmentation”), and our configuration also contains such information in the dictionary.

C USER STUDY PIPELINES

5] inputtext
Text O. +; PalM Text Generator.
o N——— Y anawer O
= , e Lo Selected text Oy Hide preview e b T e/ O AP © HMLO
Y g Temperatre 0,500 Hide preview )
701 O opuonts Webpagis O p | tkepriew @ T —— o e
o v oy r—

© APIKey
© search Engine ID

Passwordmode @ @

Hide preview e \
© options amay ©

Hide preview )

Fig. 14. Text-based pipeline. The “String picker” node provides users a drop-down menus to select one URL
from a list of URLs returned by “Google Search”. “PaLM Text Generator” is an LLM used to summarize the

full HTML page.
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Fig. 15. Real-time multimodal pipeline. The “Keyword to image” node is used to search sunglasses image,
and the “Virtual sticker” node anchors the sunglasses onto users’ face.

Figure 14 and Figure 15 visualize two pipelines we required the participants to complete in our
user study. Figure 15 is a multimodal pipeline that allows participants to interact with AR effects in
real time. Our technical evaluation shows that InstructPipe can generate this pipeline accurately:
the averaged ratio of human interactions = 5.2%. Figure 15 is a text-based pipeline that provides
participants with a summary of the news searched from Google. The technical evaluation reveals
that InstructPipe cannot generate this pipeline accurately: the averaged ratio of human interactions
= 27.8%.

Note that even though InstructPipe may be able to complete the pipeline structure in Figure 15
from users’ instruction, we observed that participants still need to fine-tune their keywords to
get an ideal pair of sunglasses. Additionally, the default anchor value is “Face top”, so participants
need to use the drop-down menu on the “Virtual sticker” node to change the value to “Eyes”. This
further motivates us to use the metric of “Time” in addition to the number of user interactions in
our study. Our demo video also covers the workflows of these two pipelines.

D SEMI-STRUCTURED INTERVIEW SCRIPT

[ Introduction ] ( Start timing! 60 min max. )

Hello, my name is X.

First, I would like to thank you for your participation and completing the consent form. Today,
you will be a participant in a user study regarding machine learning and visual programming. Your
data will be kept anonymous. Additionally, as a researcher I have no position on this topic and ask
that you be as open, honest, and detailed in your answers as possible. Do you have any questions
before we begin?

Basically, visual programming borrows the metaphor of block building and allows novice users
to develop digital functionalities without writing codes.

[Show Visual Blocks]

Here, each block is called a node, and each node takes in specific inputs, then returns the desired
outputs. What you can do is to connect a series of nodes together as a pipeline to achieve a high-level
goal.

We are going to walk you through our Visual Blocks system and ask you to actually use Visual
Blocks in two conditions to create a few applications.

[ Tutorial ]( Start timing! 10 min max. )
Before we get started, let us do a tutorial of our system.
[ Study and TLX ]( Start timing! about 30 min )

[Leverage the counter-balanced sheet and give user a task]

[Think aloud. Have a short discussion with the user. What’s the user’s plan to achieve this given
functionality?]

[ Interview ]( Start timing! about 15 min )
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1. What’s your impression of Visual Blocks / InstructPipe [counterbalanced]? Do you need many
edits / operations to make it work?

2. Are there any pipelines you come up with in work scenarios / casual scenarios?

3. What works with InstructPipe? In what specific scenarios will InstructPipe be very helpful?

4. What does not work with InstructPipe? Would you give me an example?

5. Do you have any suggestions to improve the design of both systems?

6. Which kinds of technologies would be interesting to add?

7. What applications do you want to start with InstructPipe? And what applications do you want
start without it?

That’s all for our user study. Thank you for your participation and we will compensate for your
time.
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