
Experiencing InstructPipe: Building Multi-modal AI Pipelines
via Prompting LLMs and Visual Programming

Zhongyi Zhou1, Jing Jin2, Vrushank Phadnis2, Xiuxiu Yuan2, Jun Jiang2, Xun Qian2, Jingtao Zhou2,
Yiyi Huang2, Zheng Xu2, Yinda Zhang2, Kristen Wright2, Jason Mayes2, Mark Sherwood2,

Johnny Lee2, Alex Olwal2, David Kim2, Ram Iyengar2, Na Li2, Ruofei Du2∗
1: The University of Tokyo, Japan

2: Google Research, USA

Describe the pipeline you want:

Tag:

Submit

Multimodal

Describe the emotion of a person in one 
image using emoji and show this emoji on 
the user's face in the webcam.

User

Prompting with InstructPipe Result Pipeline

Figure 1:We demonstrate InstructPipe, an AI assistant that enables users to start prototypingmachine learning (ML) pipelines
with text instructions. To achieve this, InstructPipe leverages two LLMmodules and a code interpreter to generate pseudocode
of a target pipeline, and the interpreter renders a pipeline in the node-graph editor for further human-AI collaboration.

ABSTRACT
Foundational multi-modal models have democratized AI access,
yet the construction of complex, customizable machine learning
pipelines by novice users remains a grand challenge. This paper
demonstrates a visual programming system that allows novices to
rapidly prototype multimodal AI pipelines. We first conducted a
formative study with 58 contributors and collected 236 proposals
of multimodal AI pipelines that served various practical needs.
We then distilled our findings into a design matrix of primitive
nodes for prototyping multimodal AI visual programming pipelines,
and implemented a system with 65 nodes. To support users’ rapid
prototyping experience, we built InstructPipe, an AI assistant
based on large language models (LLMs) that allows users to
generate a pipeline by writing text-based instructions. We believe
InstructPipe enhances novice users onboarding experience of
visual programming and the controllability of LLMs by offering
non-experts a platform to easily update the generation.

∗Corresponding author: me [at] duruofei [dot] com; the first author conducted this
work during an internship at Google, contact: zhongyi.zhou.work [at] gmail [dot] com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0331-7/24/05
https://doi.org/10.1145/3613905.3648656

CCS CONCEPTS
• Computing methodologies → Visual analytics; Machine
learning; • Software and its engineering→ Visual languages.

KEYWORDS
Visual Programming; Large Language Models; Visual Prototyping;
Node-graph Editor; Graph Compiler; Low-code Development; Deep
Neural Networks; Deep Learning; Visual Analytics

ACM Reference Format:
Zhongyi Zhou1, Jing Jin2, Vrushank Phadnis2, Xiuxiu Yuan2, Jun Jiang2,
Xun Qian2, Jingtao Zhou2,, Yiyi Huang2, Zheng Xu2, Yinda Zhang2,
Kristen Wright2, Jason Mayes2, Mark Sherwood2,, Johnny Lee2, Alex
Olwal2, David Kim2, Ram Iyengar2, Na Li2, Ruofei Du2. 2024. Experiencing
InstructPipe: Building Multi-modal AI Pipelines via Prompting LLMs and
Visual Programming. In Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems (CHI EA ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3613905.
3648656

1 INTRODUCTION
A visual programming interface provides users with a workspace
to program in a node-graph editor. This format allows for the
creation of a pipeline using visual elements like nodes and
connections, enhancing the ability to prototype various applications
without deep knowledge of programming languages. The field
has seen increased interest due to advancements in machine
learning (ML). Open-source ML libraries, e.g., TensorFlow [1],
PyTorch [11], and Hugging Face [15], offer a wide range of pre-built
modules, expediting AI project development and experimentation.

https://doi.org/10.1145/3613905.3648656
https://doi.org/10.1145/3613905.3648656
https://doi.org/10.1145/3613905.3648656


CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Zhou et al.

Figure 2: Design and implementation spaces of nodes for visual prototyping. (a) sketches a high-level overview of proposed
nodes in a matrix and (b) lists our implemented nodes (in black) and potential nodes (in gray).

Visual programming offers the community a platform for users
to interactively explore the creative use of existing ML models
by allowing them to freely select and connect nodes into a new
functional pipeline.

However, this streamlined approach has its limitations. The
utility of a visual programming platform relies heavily on its
predefined nodes — users’ creative process will be disrupted even
with one missing node. Compared to various built-in functions in
the programming language, visual programming typically provides
a small number of pre-defined nodes (e.g., 38 nodes in Visual
Blocks [6]). The community addresses this issue in a reactive
development cycle by collecting feature requests from users and
then assigning tasks to developers. We believe that the lack of
community guidelines makes it challenging to address this issue in
a proactive manner.

With design guidance, as developers continue to add nodes for
enhanced system utility, it will eventually clutter the node library,
causing a high cognitive burden to perceive them. Even worse,
users typically build a pipeline “from scratch”, i.e., selecting nodes,
ideating the pipeline structure and finally connecting nodes from
a completely empty workspace. A large pool of nodes can easily
overwhelm users in this creative process, causing an unsatisfactory
user experience (i.e., the usability issue). Similar issues also exist
when users write code using programming languages (with many
built-in functions and libraries), but recent advances in Large
Language Models (LLMs) show that such challenges can be
addressed. For example, GitHub Copilot [8] makes it possible to
generate code by simply describing users’ requirements in natural
language. Therefore, we hypothesized that similar AI assistants
could also benefit visual programming interfaces by reducing users’
workload in their node editing experiences.

In this paper, we present 1) a design guideline of primitive
nodes for prototyping multimodal AI pipelines and 2) an AI
assistant, called InstructPipe, that achieves rapid prototyping of
such pipelines. We gathered 236 ML pipeline proposals from
58 contributors and distilled a design space that guided our
implementation space of 27 new nodes in the system. We
further demonstrated InstructPipe, an assistant that allows users
to prototype a pipeline through natural language instruction

(Figure 1). InstructPipe presents a generated pipeline in the
visual programming workspace after the user’s instruction. If
the generated pipeline does meet the user’s requirement, the
user can further work on the creativity process based on the
generated pipeline by following the standard workflow of visual
programming.

2 DESIGN SPACE OF PRIMITIVE NODES FOR
MULTI-MODAL AI PIPELINES

To understand what pipelines people would like to build with visual
programming, we conducted an online survey to gather proposals
for a multi-modal AI pipeline. These results informed a new design
space of primitive nodes for visual programming with language
and vision models.

2.1 Online Survey
We distribute an online survey through internal communication
channels, email lists, and social media. In two weeks, we collected
236 pipeline proposals from 58 respondents, of whom 32 (55%) had
no prior experience with Visual Blocks. Using the affinity diagram
approach, two researchers organized participants’ responses and
classified the proposals into three categories: language, vision, and
multi-modal pipelines.

2.2 Observations
We followed the design space analysismethods [2] and held iterative
discussion sessions. Through this process, we discerned that the
existing 38 nodes in Visual Blocks were insufficient to satisfy
the diverse requirements to meet participants’ needs. We then
categorized the missing nodes into the following three classes:

• input nodes (e.g., text input, Google Sheets reader)
• output nodes (e.g., markdown viewer, Colab output)
• processor nodes (e.g., large language models, vision-
language models)

Input and output nodes serve as protocols that extend the creative
usage of a pipeline. Processor nodes decide the intelligence of data
processing. For example, with a Google Sheets reader node, a Large
language model node, and a Colab output node, one can create a



Experiencing InstructPipe CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

pipeline of “Visualize the user preferences data from a Google Sheet
in a bar chart”.

2.3 Node Design Matrix
Informed by the set of nodes and the classification derived
from the online survey, we crafted a design space specifically
focused on processor nodes, aiming to facilitate the prototyping of
language and vision pipelines. As shown in Figure 2, we categorize
intermediate nodes based on their input/output types including
language, vision, and metadata. “Metadata”, defined as the data
of the data, represents intermediate features commonly used
in machine learning pipelines, such as text vectors and image
landmarks.

3 SYSTEM OVERVIEW
Our system upgrades Visual Blocks [6, 7] in two aspects. First, we
implemented a large range of primitive nodes to support users’
creativity in prototyping multimodal AI pipelines. By following the
design matrix in Figure 2(a), we implemented 27 new nodes into
the system to support users’ prototyping experience. To further
enhance users’ rapid prototyping experiences, we implemented
InstructPipe, an AI assistant that enables users to build pipelines
by prompting it and finetuning the generated pipeline in the visual
programming workspace.

3.1 Node Library
Informed by the design space, we implement new nodes that
enhance the intelligence of visual programming. Figure 2(b)
summarizes our node implementation. As listed in Appendix A,
we integrate 27 new nodes into Visual Blocks to satisfy people’s
proposed pipelines. The following elaborates on five selected nodes
below:

• PaLM [5]: a large language model (LLM) that generates text
given a text prompt.

• Google Text Search: given a text query, output a list of
URLs returned from Google.

• Google Image Search: given a text query, output the first
image from Google.

• PaLI [3, 4]: a Vision-Language Model that generates text
from a joint of image and text inputs.

• Imagen [12]: a text-to-image diffusion model.

3.2 InstructPipe — An AI Assistant for Rapid
Pipeline Prototyping

InstructPipe enables users to generate a pipeline by simply pro-
viding text-based instructions [16]. We implemented InstructPipe
based on Gemini Pro [9]. The raw output format of our LLM is
pseudocode, which is proven to be an efficient representation of a
directed graph [10, 14]. InstructPipe renders the generated directed
graph on the visual programming workspace by initializing with
pre-defined default property values. For example, a PaLM node is
initialized with “max tokens = 256” (a property value in the PaLM
node). This implies that the core task achieved by InstructPipe is
selecting and connecting nodes, and it leaves the task of finetuning

property value in each node to users by displaying the pipeline in
the visual programming workspace.

4 USER JOURNEY
Here, we describe an exemplary user journey when using our
system to prototype a multimodal AI pipeline. Different from the
mainstream approach of visual programming, our demonstration
provides users with a new experience of visual programming by first
prompting the system and then finetuning the generated pipeline
in the visual programming workspace.

4.1 Step I: Describing a Target Pipeline
The user can first click on the “InstructPipe” button on the top-right
corner of the interface (Figure 3b). The system then triggers a dialog
(Figure 3a) for the user to write a prompt and select a tag. The tag
can be “language”, “visual”, or “multimodal”. After the user clicks
“Submit” at the bottom-right corner of the dialog, it completes the
“instruction” process to the AI assistant.

4.2 Step II: Finetuning Generated Results in
the Visual Programming Workspace

After the instruction, InstructPipe generates a pipeline in the
visual programming workspace. If the user is not satisfied with
the generation, they can further work on the pipeline by following
the standard approach of visual programming, i.e., selecting and
connecting nodes, based on the generated results. The visual
programming workspace also provides the user with a platform
to explore the optimal property value in each node for the most
satisfactory results.

5 CONCLUSION
In this paper, we introduced a visual programming system powered
by a wide range of multi-model nodes and InstructPipe, an AI
assistant that facilitates users to build pipelines with instructions.
The node implementation in the system was informed by our
design guideline, which is based on 236 pipeline proposals from
58 participants. InstructPipe provides users new experience in
prototyping visual programming pipelines by firstly writing an
instruction and then perform finetuning in the visual programming
workspace. We envision that InstructPipe aspires to streamline
workflow processes for novices in ML pipeline development and
inspire novel applications through its user-friendly interface.

REFERENCES
[1] 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.
[2] Stuart K Card, Jock DMackinlay, and George G Robertson. 1991. AMorphological

Analysis of the Design Space of Input Devices. ACM Transactions on Information
Systems (TOIS) 9, 2 (1991), 99–122. https://doi.org/10.1145/123078.128726

[3] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo,
Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak
Shakeri, Mostafa Dehghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha
Nagrani, Hexiang Hu, Mandar Joshi, Bo Pang, Ceslee Montgomery, Paulina
Pietrzyk, Marvin Ritter, AJ Piergiovanni, Matthias Minderer, Filip Pavetic, Austin
Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas Beyer, Julien Amelot, Kenton
Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag Arnab, Yuanzhong
Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia Angelova,
Xiaohua Zhai, Neil Houlsby, and Radu Soricut. 2023. PaLI-X: On Scaling Up a
Multilingual Vision and Language Model. arXiv:2305.18565 [cs.CV]

https://www.tensorflow.org/
https://doi.org/10.1145/123078.128726
https://arxiv.org/abs/2305.18565


CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Zhou et al.

(a) The instruction dialog of InstructPipe.

(b) The visual programming interface of InstructPipe.
Figure 3: The user interface of InstructPipe. The user can first click on the “InstructPipe” button on the top-right corner of
the interface in (b). A dialog will appear, and the user can input the instructions and select a category tag. InstructPipe then
renders a pipeline on (b), in which the user can interactively explore and revise.

[4] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski,
Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer,
Alexander Kolesnikov, Joan Puigcerver, Nan Ding, Keran Rong, Hassan Akbari,
Gaurav Mishra, Linting Xue, Ashish Thapliyal, James Bradbury, Weicheng
Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol Ayan, Carlos Riquelme,
Andreas Steiner, Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu
Soricut. 2023. PaLI: A Jointly-Scaled Multilingual Language-Image Model.
arXiv:2209.06794 [cs.CV]

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju
Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2023.
PaLM: Scaling Language Modeling with Pathways. Journal of Machine Learning
Research 24, 240 (2023), 1–113. http://jmlr.org/papers/v24/22-1144.html

[6] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Scott Miles, Maria Kleiner,
Xiuxiu Yuan, Yinda Zhang, Anuva Kulkarni, Xingyu Liu, Ahmed Sabie, Sergio
Orts-Escolano, Abhishek Kar, Ping Yu, Ram Iyengar, Adarsh Kowdle, and Alex
Olwal. 2023. Rapsai: Accelerating Machine Learning Prototyping of Multimedia
Applications Through Visual Programming. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 125,
23 pages. https://doi.org/10.1145/3544548.3581338

[7] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Xiuxiu Yuan, Kristen Wright, Mark
Sherwood, Jason Mayes, Lin Chen, Jun Jiang, Jingtao Zhou, Zhongyi Zhou, Ping
Yu, Adarsh Kowdle, Ram Iyengar, and Alex Olwal. 2023. Experiencing Visual
Blocks for ML: Visual Prototyping of AI Pipelines. In Adjunct Proceedings of the
36th Annual ACM Symposium on User Interface Software and Technology (San
Francisco, CA, USA) (UIST ’23 Adjunct). Association for Computing Machinery,
New York, NY, USA, Article 76, 3 pages. https://doi.org/10.1145/3586182.3615817

[8] GitHub. 2023. GitHub Copilot · Your AI Pair Programmer. https://github.com/
features/copilot

[9] Gemini Team Google. 2023. Gemini: A Family of Highly Capable Multimodal
Models. https://doi.org/10.48550/arXiv.2312.11805 arXiv:2312.11805 [cs.CL]

[10] Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual Programming:
Compositional Visual Reasoning Without Training. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. arXiv. https://doi.org/10.48550/
arXiv.2211.11559

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

https://arxiv.org/abs/2209.06794
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.1145/3544548.3581338
https://doi.org/10.1145/3586182.3615817
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.48550/arXiv.2211.11559
https://doi.org/10.48550/arXiv.2211.11559


Experiencing InstructPipe CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32 (2019). https://doi.org/10.
48550/arXiv.1912.01703

[12] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. SaraMahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad
Norouzi. 2022. Photorealistic Text-to-Image Diffusion Models With Deep
Language Understanding. arXiv:2205.11487 [cs.CV]

[13] Ray Smith, Daria Antonova, and Dar-Shyang Lee. 2009. Adapting the Tesseract
open source OCR engine for multilingual OCR. In Proceedings of the International
Workshop on Multilingual OCR. 1–8.

[14] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual Inference
via Python Execution for Reasoning. arXiv:2303.08128 [cs.CV]

[15] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s Transformers: State-of-the-Art Natural Language Processing.
ArXiv Preprint ArXiv:1910.03771 (2019). https://arxiv.org/pdf/1910.03771

[16] Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian,
Jingtao Zhou, Yiyi Huang, Zheng Xu, Yinda Zhang, Kristen Wright, Jason
Mayes, Mark Sherwood, Johnny Lee, Alex Olwal, David Kim, Ram Iyengar,
Na Li, and Ruofei Du. 2023. InstructPipe: Building Visual Programming
Pipelines with Human Instructions. https://doi.org/10.48550/arXiv.2312.09672
arXiv:2312.09672 [cs.HC]

APPENDIX
A A LIBRARY OF NEWLY IMPLEMENTED

PRIMITIVE NODES
Drawing upon §2 Design Space, we implement the full list of 27
new nodes that have been integrated into the most recent iteration
of Visual Blocks. These additions were formulated based on insights
garnered from the community survey, as detailed below:

(1) PaLM [5]: a large language model (LLM).
(2) Google Text Search: given a text query, output a list of

URLs returned from Google.
(3) Google Image Search: given a text query, output the first

image from Google.
(4) PaLI [3, 4] (a Search node): Pathways Language and Image

model that generates text from a joint of image and text
inputs.

(5) Imagen [12]: a text-to-image diffusion model.
(6) OCR [13]: a text recognition model from an image query.
(7) Colab Output*: given input code, output to a Colab node

to execute the code.
(8) URL to HTML: given an URL as text, fetch the webpage as

text output.
(9) URL to Image∗: given an URL as text, fetch the data as an

image output.

(10) Markdown Viewer: given a text in MarkDown language,
visualize it as a webpage.

(11) Text Processor: given multiple text, join them together or
format them in a certain way.

(12) String Picker: given a list of text and an ID, fetch one of
them as output.

(13) HTML Viewer: given a text in HTML language, visualize it
as a webpage.

(14) Hand Pose Detection: given an image, return landmarks
of the hands using MediaPipe.

(15) Hand Gesture Detection: given an image, recognize the
gesture using MediaPipe.

(16) Face Landmark Detection: given an image, return land-
marks of the face.

(17) Body Segmentation: run a deployed MediaPipe body
segmentation model.

(18) Object Detection∗: given an image, output the detected
object class name and their bounding boxes.

(19) Bounding Box Visualizer∗: visualizing bounding boxes of
machine learning models.

(20) Landmark Visualizer: visualizing pose landmarks of
machine learning models.

(21) Mask Visualizer: visualizing segmentation mask of ma-
chine learning models.

(22) Virtual Sticker: given landmarks, an original image, and a
sticker image, overlay sticker image onto the original image
upon the given landmark position.

(23) Text Toxicity∗: given a text input, output the toxicity level
of the language.

(24) Text Processor: given (a) text input(s), output a reformated
text.

(25) Google Sheets Reader: given a Google Sheets URL and
range of data, fetch data and output as text.

(26) Google Sheets Writer∗: given a Google Sheets URL and
range of data, output the input text directly to the Google
Sheets.

(27) CustomAPI∗: Given an API URL, query it via GET or POST
methods and fetch the result.

Nodes marked with ∗ are out of the scope of the current version
of InstructPipe.

https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2303.08128
https://arxiv.org/pdf/1910.03771
https://doi.org/10.48550/arXiv.2312.09672
https://arxiv.org/abs/2312.09672

	Abstract
	1 Introduction
	2 Design Space of Primitive Nodes for Multi-modal AI Pipelines
	2.1 Online Survey
	2.2 Observations
	2.3 Node Design Matrix

	3 System Overview
	3.1 Node Library
	3.2 InstructPipe — An AI Assistant for Rapid Pipeline Prototyping

	4 User Journey
	4.1 Step I: Describing a Target Pipeline
	4.2 Step II: Finetuning Generated Results in the Visual Programming Workspace

	5 Conclusion
	References
	A A Library of Newly Implemented Primitive Nodes

