
Multiresolution Deep Implicit Functions for 3D Shape Representation

Zhang Chen1,2,* Yinda Zhang1 Kyle Genova1 Sean Fanello1 Sofien Bouaziz1

Christian Häne1 Ruofei Du1 Cem Keskin1 Thomas Funkhouser1 Danhang Tang1

1 Google 2 ShanghaiTech University

Abstract

We introduce Multiresolution Deep Implicit Functions
(MDIF), a hierarchical representation that can recover fine
geometry detail, while being able to perform global oper-
ations such as shape completion. Our model represents a
complex 3D shape with a hierarchy of latent grids, which can
be decoded into different levels of detail and also achieve
better accuracy. For shape completion, we propose latent
grid dropout to simulate partial data in the latent space
and therefore defer the completing functionality to the de-
coder side. This along with our multires design significantly
improves the shape completion quality under decoder-only
latent optimization. To the best of our knowledge, MDIF is
the first deep implicit function model that can at the same
time (1) represent different levels of detail and allow progres-
sive decoding; (2) support both encoder-decoder inference
and decoder-only latent optimization, and fulfill multiple
applications; (3) perform detailed decoder-only shape com-
pletion. Experiments demonstrate its superior performance
against prior art in various 3D reconstruction tasks.

1. Introduction

In recent years, deep implicit functions (DIF) have gained
much popularity as a 3D shape representation in applica-
tions such as compression [31], shape completion [8], neural
rendering [25, 34], and super-resolution [4]. In contrast
to explicit representations such as point clouds, voxels, or
meshes, a 3D shape is encoded into a compact latent vector,
which when combined with a sampled 3D location as input
to a decoder can be used to evaluate an implicit function for
surface reconstruction.

In this paper, our objective is to design a DIF for shape
representation that has three main properties: 1⃝ represent
shapes with arbitrarily fine details (adding more bits to
the representation provides more details), 2⃝ support both
encoder-decoder inference and decoder-only latent optimiza-
tion, and can be applied to different tasks, and 3⃝ enable

*Work done while the author was an intern at Google.

Teaser

GT Level 0 Level 2 Level 4

Figure 1: Example results of our model for auto-encoding
(row 1 and 2) and shape completion (row 3) in different
levels of detail. Green dots represent the observed depth
pixels for the completion task.

detail-preserving shape completion from inputs with large
unobserved regions. These properties are all important for a
shape representation. Yet, to the best of our knowledge, no
prior method has achieved all three properties.

Existing DIF methods can be classified into global and
local approaches. Early methods mostly belong to the global
category [27, 3, 23, 39, 24], where a single latent vector is
used to represent the whole shape. These approaches learn to
encode a global shape prior in a compact latent space, which
can then be leveraged to fulfill various reconstruction tasks.
However, due to the limited capacity of the latent space
and the global nature of these approaches, global methods
usually lack fine-grained detail.

More recently, local approaches [19, 1] have been pro-
posed. These methods divide the space into local regions
and encode each one with a latent vector. Such local repre-
sentations provide better accuracy and generalization when
representing shapes, especially under decoder-only latent
optimization. However, they do not model a global prior. As
a result, they cannot be used for shape completion with large
unobserved regions since in such regions there is no data to
optimize the latent vectors. To overcome this issue, [13, 4]

use an encoder to regress local latent vectors from incom-
plete inputs. However, their methods are limited to encoder-
decoder inference when doing shape completion. Compared
to decoder-only latent optimization, encoder-decoder infer-
ence has less flexibility on the inputs and is less accurate for
preserving detail in observed regions.

In this paper, we propose a novel 3D representation: Mul-
tiresolution Deep Implicit Function (MDIF). The core idea is
to represent a shape as a multiresolution hierarchy of latent
vectors, where each level encodes different frequencies of
an implicit function. The higher levels of our representa-
tion provide the global shape and the lower levels provide
fine detail. Different from local methods [13, 4], MDIF has
a one-decoder-per-level architecture, where each decoder
produces a residual with respect to its parent level, like a
Haar wavelet [6]. This simplifies learning of fine detail and
enables progressive decoding to achieve arbitrary levels of
detail (see Figure 1).

To enable detailed shape completion with decoder-only
latent optimization, we further propose to use global connec-
tion across levels as well as applying dropout on the latent
codes. The global connection serves to integrate global pri-
ors into lower levels to compensate for missing observations.
Meanwhile, applying dropout on the latent codes simulates
partial observation in the latent space during training, and
therefore forces the decoders to learn to complete shapes
under encoder-less scenario.

Overall, our model has the following merits:

1. Can represent complex shapes with high accuracy, and
allows progressive decoding for different levels of de-
tail.

2. Supports both encoder-decoder inference and decoder-
only latent optimization, and is effective for different
applications as illustrated in the experimental results.

3. Enables detailed decoder-only shape completion that
accurately preserves detail in observed regions while
producing plausible results in unobserved regions.

2. Related Work
There are largely two types of 3D geometry representa-

tions in computer graphics and vision. Explicit representa-
tions such as meshes, splines, and point clouds, are widely
adopted in the field of CAD and real-time rendering [10, 11],
since they are compact and highly optimized for editing and
rendering. Implicit representations, such as the zero-level
set of a signed distance field, have gained increasing popu-
larity in volumetric capture [9, 18, 26, 10, 7], since they can
represent arbitrary surface topology and define watertight
surfaces.

Convolutional neural networks (CNNs) have been pro-
posed for predicting an implicit representation of objects.

Early techniques were only able to predict low-resolution
grids [15, 5, 38]. More recently, methods relying on an
octree structure have been proposed [32, 16, 28, 36, 37]
to avoid the cubic growth inherent to high-resolution grids.
However, the implicit representation learnt by these networks
is still discrete, potentially creating discretization artefacts
when reconstructing 3D shapes. To overcome this limita-
tion and allow for learning the implicit representation over
the continuous domain, the problem can be reformulated
as a multi-layer perceptron (MLP) which takes the location
at which the implicit representation is to be evaluated as
input [27, 3, 23, 39, 24]. This allows for querying the im-
plicit representation at continuous locations during test time.
Termed as Deep Implicit Functions (DIF), this technique can
be categorized into global, local, and hierarchical methods.

Global methods. Global methods represent a 3D shape
with a single holistic latent code. The projection to the
latent space can be done via an encoder [3], or latent opti-
mization [27]. A decoder is then used to recover the shape
from the latent vector. To obtain a smooth manifold on the
latent space for shape generation, people have developed
optimization strategies based on auto-decoding [27], cur-
riculum learning [12], and adversarial training [21]. Global
methods are robust to local noise, hence have good shape
completion capability. However, these approaches have dif-
ficulty recovering fine detail. Recent methods [29, 30, 25]
propose to use periodic activation functions to lift the input
positional vector to high dimensional space allowing to bet-
ter preserve high frequency detail. However, these methods
focus on per-instance fitting instead of generalization to new
scenes and objects.

Local methods. In contrast, local methods uniformly divide
the 3D space into local grids [19, 1, 4] or use an encoder to
decompose space into local parts [14, 13]. Then they either
assign each local grid/part with a latent code [19, 1, 13] or
trilinearly interpolate feature grids to obtain the latent code at
each querying location [4]. Since each latent code only needs
to represent the shape in a local region, it is much easier to
encode detail and generalize to unseen objects. However,
these methods do not include global context, hence it is not
feasible to perform decoder-only shape completion when
there are large unobserved regions. While the feature grids
used by [4] span multiple resolutions, they still do not contain
global context and are only used to represent single level of
detail.

Hierarchical methods. Some methods perform shape re-
construction in stages, where a low-resolution shape predic-
tion precedes a high-resolution prediction [8, 20, 17, 35]. For
example, Global-To-Local Generative Models [35] decode a
global voxel grid and then add detail with a part-wise refiner.
NSVF [22] uses an octree hierarchy of implicit functions to
represent the radiance field for neural rendering. Though

...

conv

conv

conv
SDF

Residual

... ...

... ...
Residual

...

E

D

D

D

Feature Latent
Code

3D
Position E Encoder D Decoder

deconv

Traini

trilinear

Input SDF
Output Shape

F

Concat Sum

trilinear

Figure 2: Starting from the input SDF S, we first extract a global feature F , which is then encoded into different levels of
latent codes through 3D convolutions and transposed convolutions. The decoder is performed per-level to support different
resolutions. The outputs of the pipeline consist of a global SDF S0 and multiple residuals Rn at different scales, which are
used to compute the final reconstruction.

their motivation for using an octree is similar as ours, they
do not use it to represent a globally consistent shape, but
rather a view-dependent radiance function suitable for view
synthesis. They would not be able, for example, to perform
shape completion.

3. Methodology
Our overarching goal is to design a flexible representa-

tion that can generate shapes from coarse to fine resolutions
for reconstruction or completion tasks. Depending on the
application, our model can perform inference in the encoder-
decoder mode for efficiency or the decoder-only latent opti-
mization for better accuracy. To achieve this, our pipeline,
shown in Figure 2, encodes the input SDF into multiple
levels of latent codes. Each level has a decoder reconstruct-
ing in a different detail level. To detail our design, we first
formulate a multi-resolution representation in the form of tra-
ditional implicit function in Section 3.1. Then in Section 3.2,
we explain how to design a deep neural network version
of this representation. The training process is described
in Section 3.3. Finally in Section 3.4, we explain different
inference modes with respect to different applications.

3.1. Multires Implicit Function

We choose to learn the signed distance function (SDF),
which is a level set defined as:

V (τ) = {x : S(x) = τ} (1)

where V is the volume containing the shape, x is a 3D
point inside V , and S : R3 → R is the SDF function that
represents the signed distance to the closest surface (positive
on the outside and negative on the inside). We then use S(x)
to represent the SDF value of a particular point x, and V (0)
to represent the surface or zero-crossing.

Level 0 () :
SDF 1x1x1

Level 1 () :
Residual 2x2x2

Figure 3: Octree subdivision and decoded outputs of the first
two levels: (left) level 0 contains a single cell and decodes
into SDF; (right) level 1 contains a 23 grid and decodes into
residuals. Aggregating all levels we have the final SDF with
fine details.

Now we can define an N -level version of S as {Sn}, n =
0 . . . N − 1, where each level represents different frequency
of details from low to high. To construct this, we subdivide
V into an N -level octree. Unlike conventional octrees which
only subdivide non-empty cells, our tree is balanced because
completing partial observation is one of our target scenarios.

For level 0 (the coarsest level), geometry is represented
as SDF S0; for level n > 0, we use the residual Rn =
Sn − Sn−1 to capture finer details, as shown in Figure 3.
The final SDF reconstruction is therefore defined as S =
S0 +

∑N−1
n=1 Rn. In Section 4.2, we empirically show that

inferring residuals yields better performance compared to
directly regressing the SDF.

3.2. Multires Deep Implicit Function

The idea of a deep version of the multires implicit func-
tion, is to encode the shape in each cell of the octree into a
latent code z with DNN. For a cell in level n = 0, its latent
code represents an SDF; while for a cell in n > 0, its latent
code encodes residuals. Eventually we end up having a tree
of latent codes Z, where the latent codes in each cell of level
n form a latent grid Zn at this level. The spatial resolution

and total capacity of the latent grids increase with the level,
and consequently the level of detail gets higher.

In Figure 2, we describe the design of our network archi-
tecture to encode the shape into Z. On the encoder side, the
input is the regular grid form of a SDF S with a resolution
of 1283. The encoder E first extracts a global feature F from
S. Then F is encoded into different levels of latent grids
through 3D convolution layers. Note that at level 0, there is
only one latent code representing the global shape which is
critical for completion tasks.

On the decoder side, unlike [4], our model has one de-
coder per level to support different levels of detail. For the
decoder module at each level, we choose IM-Net [3] which
consists of several fully-connected layers. The remaining
question is what do we input to the decoders? At the global
level (n = 0), since there is only one latent code, the decoder
D0 simply takes z0 and a 3D position x as input, and decodes
the SDF value at that point. For higher levels (n > 0), the
input of decoder Dn consists of two parts. The first part is
similar to [4], we use trilinear interpolation to sample a latent
code zn from the latent grid of this level as Zn(x), based on
the 3D location x. For the second part, we first apply decon-
volution to upsample z0 to a latent grid Ẑn, which has the
same spatial resolution as Zn. Then trilinear interpolation
is also applied to sample a latent code ẑn from Ẑn. This
allows the decoder Dn to have access to the global context
to better decode local details as well as compensating for
missing data during shape completion. We call this global
connection. Formally,

D0(z0,x) = S0,

Dn(zn, ẑn) = Rn, n > 0.
(2)

Note that for n > 0, the decoders do not need to take 3D
positions x as input, because zn and ẑn are already functions
of x via trilinear interpolation. Finally, since Dn>0 predicts
residual R, the outputs of all levels are aggregated to have
the final SDF. For detailed network architecture, please refer
to our supplementary.

3.3. Training

MDIF is trained end-to-end in an encoder-decoder fashion
because: 1⃝ it allows both encoder-decoder inference and
decoder-only latent optimization to be available during test-
time; 2⃝ training with an encoder is generally more efficient
comparing to training in decoder-only mode, since latent
codes are not initialized randomly.
Points Sampling. We generate 1283 regular SDF grids as
the input of the encoder E . In addition, the decoders require
a 3D point set as training data. Similar to [13], we sample
a uniform point set PU inside the object bounding box, as
well as a near-surface point set PS ⊂ {(x, S(x)) : |S(x)| <
0.04} for each training object. Each point set has 100K

E D E D

D

(a) Typical way (b) Our method

E D

Tr
ai

n
In

fe
re

nc
e

Encoder-decoder Encoder-decoder

Encoder-decoder Decoder-only

Figure 4: (a) The conventional way of training an auto-
encoder for completion is to feed partial data (blue) from the
encoder side. In this way, the encoder plays a crucial role in
completion during inference. (b) We instead apply random
dropout to our latent grids during training (top), which forces
the decoder to learn to complete the shape (green). As a re-
sult, detailed completion can be achieved with decoder-only
latent optimization (bottom). For simplicity, we visualize
levels of decoders as one block.

samples. Mixing the two gives us the final training set P =
PU ∪ PS , which implicitly applies more weight to the near-
surface points. At each training iteration, 4096 samples are
randomly drawn from each set.
Loss. During training, our final loss is the summation of
losses at all levels, such that L =

∑N
n=0 Ln. For each level

n, we first aggregate the predicted SDF and residual up to
this level to produce Sn, and then measures the L1 difference
between it and groundtruth S̄. Formally,

Ln =
1

|P|
∑
x∈P

∣∣Sn(x)− S̄(x)
∣∣ . (3)

Latent grid dropout. There are mainly two standard ways
to make a deep implicit function model work for completion
tasks. The more conventional way, as illustrated in Fig-
ure 4 (a), is training the model to take partial data as input
and complete them. In this manner, the completion function-
ality is distributed among the encoder and decoder, therefore
different encoders need to be trained for different comple-
tion tasks. Another way is decoder-only latent optimization,
where the encoder is not needed during test-time and the
latent code is optimized based on partial data [27]. This
manner provides higher accuracy on observed regions and
directly generalizes to different completion modalities (depth
image, partial scan, etc.) without retraining. However, it
only works for global methods and cannot be applied to local
methods. The reason is that for unobserved regions with no
data point, the corresponding local latent codes cannot be
optimized and will stay as initialization. Such latent codes
would then be decoded into wrong shapes by the decoder.

To address this, we propose to train with complete shapes,
but apply random dropout to latent grids, as shown in Fig-
ure 4 (b). The motivation is to simulate partial data in the
latent space rather than the input space, hence forcing the

decoder to learn to complete shapes without encoder. Specif-
ically, for each level n > 0, we apply spatial dropout to Zn,
but keep the full content of Ẑn, so that the decoder can utilize
the global context from level 0. Note that our proposed multi-
level architecture and global connection make this dropout
strategy possible during training: this cannot be applied to
other global or local approaches, without substantial changes
in the architectures.

3.4. Inference

We discuss our inference process with respect to auto-
encoding (complete observation) and shape completion (par-
tial observation).
Auto-encoding. MDIF supports both encoder-decoder infer-
ence and decoder-only latent optimization. For applications
that emphasize efficiency, encoder-decoder inference is a
better choice, as it only has one feed-forward pass. For
applications that require accuracy, decoder-only latent opti-
mization is preferred.
Shape completion. Here we focus on shape completion
from a single depth image via decoder-only latent optimiza-
tion, due to its benefits in accuracy and generalizability. We
initialize all latent codes as zeros. Similar to global methods,
level 0 can be optimized to have a coarse but complete re-
construction. For higher levels, the decoder is trained to add
detail onto the observed parts, while produce sparse resid-
ual to the unobserved part. For this optimization process to
work, we need to properly sample points and modify the loss
function to accommodate incomplete observation.

When sampling the point set P from a depth image, since
part of the shape is occluded, we cannot simply sample
points in the full volume as in training. Instead, we apply
raycasting to sample camera-observable points as PV , and
occluded points as PO. For level n = 0, the loss function is
the same as Equation 3 except only applied to visible points
PV . For level n > 0, the loss function Ln is modified to
contain two terms as follows:

Ln = LV
n + λLO

n ,

LV
n =

1

|PV |
∑

x∈PV

∣∣Sn(x)− S̄n(x)
∣∣ ,

LO
n =

1

|PO|
∑

x∈PO

(1−Gσ (d(x,PV))) |Rn(x)| .

(4)

The first term LV
n is to minimize the difference between ag-

gregated SDF prediction and ground truth for visible points.
The second term LO

n is for regularizing the residual of oc-
cluded points, such that the global shape from level 0 will
be preserved for the unobserved part. In particular, d(x,PV)
measures the closest distance from an occluded point x to the
visible point set PV , and is normalized by a Gaussian G of
standard deviation σ. In practice, we empirically set λ = 10
and σ = 0.1. We call the second term global consistency.

4. Experiments

In this section, we first validate the benefits of our
proposed components by ablating important aspects (Sec-
tion 4.2). Then to evaluate the effectiveness of our ap-
proach, we compare with state-of-the-art methods on auto-
encoding 3D shapes (Section 4.3) and applications includ-
ing point cloud completion (Section 4.4), voxel super-
resolution (Section 4.5) and shape completion from depth
image (Section 4.6). These experiments demonstrate the
capability of our method under different tasks and infer-
ence modes. We use 5 levels for MDIF in the experi-
ments and set the dimensions of the latent grids {Zn} as:
[13 × 512, 23 × 64, 43 × 32, 83 × 16, 163 × 8]. But note
that MDIF is flexible to use any number of levels. During
decoder-only latent optimization, we fix all other network
parameters and only optimize over {Zn}. Please refer to
supplementary for more implementation details.

4.1. Dataset & Metrics

Following prior works [19, 13], we run the experiments
on the ShapeNet dataset [2] with train/test splits from
3D-R2N2 [5], which contain a subset of 13 categories in
ShapeNet. We use all 13 categories in our experiments ex-
cept for ablation studies where we only use the chair category.
In all experiments, we only take the train split for training
and leave out the test split for evaluation. For metrics, we use
the Chamfer L2 distance and F-Score with the exact settings
as in [13]. Since the Chamfer distance measures the average
errors of all points, while the F-Score measures the ratio of
good predictions, these two metrics do not always agree with
each other: a better F-Score with a higher Chamfer distance
usually indicates a few outliers resulting in significant error.

4.2. Ablation Study

We conduct our ablation studies on the chair category of
ShapeNet, for it contains large number of instances as well
as significant intra-class shape variance. The models are all
trained under encoder-decoder scheme and use decoder-only
latent optimization during inference.

Global/local/hierarchical. We compare MDIF with a
global and a local baselines to emphasize the impact of
MDIF ’s hierarchical model. The global baseline only has
level 0, whilst the local baseline has only level 4 (a 163 latent
grid). In Table 1, we compare with the baselines in terms
of auto-encoding and shape completion from depth image.
For auto-encoding, the local baseline clearly outperforms
global, since it has larger capacity and the capability to cap-
ture details. On the flip side, for shape completion, the global
baseline has better accuracy because the local baseline be-
haves randomly on the unobserved part, as visualized in the
column 3 of Figure 5. Our MDIF however, incorporates
the benefits of global and local levels, and produces superior

Method Auto-encoding Shape Completion
Chamfer (↓) F-Score (↑) Chamfer (↓) F-Score (↑)

Ours 0.009 99.5 1.34 66.5
Global baseline 0.228 88.7 1.56 63.7
Local baseline 0.012 99.2 5.47 48.3

Table 1: Quantitative comparisons among
global/local/hierarchical baselines. The local base-
line has better auto-encoding performance than global, but
performs poorly for shape completion from depth image.
Our method combines the benefits of both.

GT

Au
to

-
En

co
di

ng
Sh

ap
e

C
om

pl
et

io
n

Global Local Ours

Figure 5: Qualitative comparisons among
global/local/hierarchical baselines. The global base-
line lacks detail but behaves reasonably in both applications.
The local method works well on observed data (green dots)
but generates noisy shapes for unobserved part. Our method
has superior performance in both scenarios.

results in both tasks.

Network components. In Table 2, we incrementally com-
pare the impact of four network components during decoder-
only latent optimization.

Global consistency loss (Equation 4), which is designed
to work for shape completion, has marginal improvements
on the overall completion numbers. However, the column 3
of Figure 6 shows that it is still important for clean recon-
struction in unobserved regions.

We also compare the difference between decoding into
SDF S or residual R in Equation 2. Since predicting residual
forces lower levels to focus on the addition of fine detail, it is
a stronger constraint and improves both auto-encoding and
shape completion.

Latent grid dropout is another component that is tailored
to shape completion. Without it, the Chamfer error drasti-
cally increases from 3.0 to 8.38. Also, it slightly improves
decoder-only auto-encoding. We hypothesize it is because
dropout improves the generalization of the decoders at levels
1-4 to test data and reduces the ambiguity between levels.

Finally, global connection passes the global shape prior
to other levels. Without it, the completion results are almost
unconstrained on the unobserved part. It also helps auto-
encoding, since without it, we are asking the network to add
more detail without knowing what has been predicted by the

Method Auto-encoding Shape Completion
Chamfer (↓) F-Score (↑) Chamfer (↓) F-Score (↑)

Full pipeline 0.009 99.5 1.34 66.5
No consistency loss - - 1.43 64.7
No residual 0.025 98.2 3.00 53.0
No dropout 0.026 97.9 8.38 43.0
No global connection 0.086 93.9 19.9 39.6

Table 2: Quantitatively ablate the impacts of differ-
ent components on auto-encoding and shape completion
from depth image.

GT Full
pipeline

No
consistency

loss

No
residual

No
dropout

No
global

connection

Figure 6: Qualitative ablation of the impacts of differ-
ent components on shape completion from depth image.
Green dots are projected depth pixels (observed data). Note
that every component is necessary for good results.

previous levels, which is not sensible.

4.3. Auto-Encoding 3D Shapes

Accuracy on test split. We first evaluate the auto-encoding
accuracy under encoder-decoder inference for the test shapes
in 3D-R2N2. We compare our approach with state-of-the-
art DIF methods including OccNet (“Occ.”) [23], SIF [14],
LDIF [13] and IF-Net (“IF.”) [4]. The results for OccNet,
SIF and LDIF are kindly provided by the authors of [13]. For
IF-Net, it originally uses high-resolution latent grids (up to
1283) which altogether is over 20 times larger than the input
grid (1283) in the number of parameters. This would make
the encoded latent grids meaningless for auto-encoding task.
Therefore in this experiment, we constrain IF-Net to only use
latent grids up to 163 resolution (same as our approach) and
have same total number of parameters in the latent grids as
our approach. Table 3 (middle columns) show the average
metrics across 13 categories. Our method achieves slightly
higher F-Score and much lower Chamfer error, which means
it works better overall and on hard examples too. As visu-
alized in Figure 7, our method preserves details well and
represents thin structures much better than the competing
methods (see the last row).

Next, we evaluate the performance under decoder-only
latent optimization. We compare with OccNet (“Occ.”) [23],
IM-Net (“IM.”) [3] and a local baseline (resembles [19, 1]),
as shown in Table 3 (right columns). Our method also per-
forms the best under this inference mode and can improve

Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

Chamfer 0.49 1.18 0.4 0.39 0.19 0.43 0.46 0.14 0.10
F-Score 81.9 59 92.2 92.9 93.0 81.4 86.7 96.9 97.0

Table 3: Auto-encoding accuracy for objects in 3D-R2N2

test set. Middle columns compare methods under encoder-
decoder inference while right columns compare under
decoder-only latent optimization. ∗: decoder-only latent
optimization.

GT OccNet SIF LDIF IF-Net Ours Ours*

Figure 7: Auto-encoding results on test split. Our method
better reconstructs the groundtruth and recovers fine details.
∗: decoder-only latent optimization.

over encoder-decoder inference by a large margin. The last
column of Figure 7 shows qualitative results.
Generalizability. In this experiment, we study the general-
izability to shapes vastly different from training data. We
test the trained models from the last experiment without fine-
tuning on 10 ShapeNet categories that are unseen during
training. In Table 4, we compare the performance under both
inference modes, and our method respectively outperforms
other methods. While global methods generalize poorly to
unseen categories, our method performs equally well as seen
categories. Qualitative results are shown in Figure 8.
Progressive refinement. One unique property of MDIF is
the capability to decode shapes in different levels of detail.
This enables the progressive refinement application in graph-
ics, where 3D data are encoded into different levels of detail
and progressively rendered. Since MDIF has a multi-level
architecture, this can be easily achieved by only decoding
the shape up until a certain level. Figure 9 shows the distor-
tion against the accumulated latent code size in bytes of each
level, i.e., latent space capacity. MDIF consistently improves
with each level added. When under similar bytes, MDIF still
outperforms SIF, LDIF and IF-Net.

4.4. Point Cloud Completion

In this application, we take voxelized point cloud instead
of SDF grid as input. We follow the same steps as IF-Net [4]

Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

Chamfer 0.85 1.48 0.53 0.40 0.17 0.62 0.47 0.063 0.054
F-Score 66.6 43.0 84.4 92.4 92.8 71.1 80.5 97.5 97.5

Table 4: Auto-encoding accuracy for objects in un-
seen categories. Middle columns compare methods under
encoder-decoder inference while right columns compare un-
der decoder-only latent optimization. ∗: decoder-only latent
optimization.

GT OccNet SIF LDIF IF-Net Ours Ours*

Figure 8: Auto-encoding results for unseen categories. ∗:
decoder-only latent optimization.

Figure 9: Progressive refinement rate-distortion. Our
model allows progressive transmission of the latent codes of
each level for refinement. This figure shows the accumulated
latent code size (in bytes) and the respective distortion. For
reference, the original 1283 volume is 8MB.

to produce such input: first sample 300 points from object
surface and then voxelize these points into a 1283 grid. We
compare our method with IF-Net, where both methods use
encoder-decoder inference. As indicated in Table 5 (middle
2 columns), our method has higher F-Score and much lower
Chamfer error. This reveals that our method is more accurate
and stable in prediction. Figure 10 (top row) shows results
for one example data. Our method preserves the cavity in
the legs while IF-Net incorrectly fills part of the cavity.

4.5. Voxel Super-Resolution

In this task, we input 323 occupancy grid and ask the net-
work to predict the underlying continuous implicit field. The
resolution of output grid for meshing is 128. We compare
our method with IF-Net, with both under encoder-decoder
inference. Table 5 (right 2 columns) show the quantitative
results. Similar to the case in point cloud completion, our
method outperforms IF-Net with a large margin in Chamfer
error. In Figure 10 (bottom row), we show qualitative results

Method Point Cloud Completion Voxel Super-Resolution
Chamfer (↓) F-Score (↑) Chamfer (↓) F-Score (↑)

IF-Net 1.61 85.0 1.82 65.4
Ours 0.39 86.1 0.96 66.9

Table 5: Quantitative results for point cloud completion and
voxel super-resolution.

Input

test_02828884\fc3865756db954685896b

IF-Net Ours GT

test_04379243\f58b9e92e45367326c348

Figure 10: Qualitative results for point cloud completion
(top row) and voxel super-resolution (bottom row). More
qualitative results are available in supplementary.

on one example data. Our method is reasonably accurate
in both global shape and local detail while IF-Net produces
artifacts near the object boundary.

4.6. Shape Completion from Depth Image

Our final experiment investigates shape completion from
depth image. We compare MDIF with IM-Net, OccNet
and LDIF. OccNet and LDIF use encoder-decoder inference
while IM-Net and MDIF use decoder-only latent optimiza-
tion. Note that for IM-Net and MDIF , we directly use the
model trained in the auto-encoding task (Section 4.3) with-
out retraining or finetuning. This is considered a benefit
of decoder-only latent optimization. Figure 11 reports the
percentages of surface points with distance to groundtruth
smaller than different thresholds. MDIF has a good propor-
tion of points with low error and consistently outperforms
IM-Net at all thresholds, reflecting its advantage on preserv-
ing details in observed regions. However, MDIF has higher
error in unobserved regions than methods under encoder-
decoder inference (OccNet, LDIF). This is illustrated in Fig-
ure 12, where the errors of our results are mostly on the
occluded side. For example, in row 4 where the table top
is completely unobserved, our estimation is thicker than
groundtruth, hence resulting in higher error. Despite this, the
predicted shape still looks plausible. This and other exam-
ples suggest that the Chamfer distance and F-Score are suited
for assessing the observed parts, but not for the unobserved
parts where many plausible solutions exist. Therefore, to
evaluate plausibility, we further conduct a user study that
votes between MDIF and LDIF results on 32 pairs of exam-
ples (please refer to supplementary for details). The results
show that 54.2% of the participants chose MDIF results as
more plausible, whilst 31.9% thought LDIF results were bet-
ter. In addition, 13.9% could not decide between MDIF and
LDIF. Moreover, when compared with the quantitative met-
rics, 68.1% disagree with the Chamfer distance, and 51.4%
disagree with the F-Score.

Figure 11: Shape completion from depth image. The pro-
portion of predicted points with distance to groundtruth
smaller than different thresholds. †: encoder-decoder in-
ference; ∗: decoder-only latent optimization.

GT LDIF LDIF Ours Ours
Figure 12: Qualitative results for shape completion from
depth image. We visualize the reconstruction and error
maps (low/mid/high) of three objects from two different
angles. In GT column, green dots represent observed parts.

5. Conclusion
In this paper, we present MDIF, a multi-resolution deep

implicit function to progressively represent and reconstruct
geometries. MDIF is trained end-to-end in an encoder-
decoder fashion and supports both encoder-decoder infer-
ence and decoder-only latent optimization. We demonstrate
that MDIF outperforms state-of-the-art methods on tasks
including auto-encoding 3D shapes, point cloud completion
and voxel super-resolution. We further show that MDIF en-
ables detailed decoder-only shape completion from a depth
image: the details in observed regions are accurately pre-
served while the unobserved regions are completed with
plausible shapes. In the future, we would like to explore
transferring details from observable parts to occluded parts
in completion tasks. We also plan to apply MDIF to more
applications such as shape manipulation.

Multiresolution Deep Implicit Functions for 3D Shape Representation
(Supplementary Material)

Zhang Chen1,2,* Yinda Zhang1 Kyle Genova1 Sean Fanello1 Sofien Bouaziz1

Christian Häne1 Ruofei Du1 Cem Keskin1 Thomas Funkhouser1 Danhang Tang1

1 Google 2 ShanghaiTech University

6. Supplementary Material
6.1. Implementation Details

Detailed network architecture. Figure 13 shows the de-
tailed architecture of our network. On the left, Figure 13 (a)
is the encoder network that is used in training and encoder-
decoder inference. It takes 3D grid as input and outputs the
latent grid Zn of each level. For the voxel super-resolution
experiment (Section 4.5), since the input is only 323, we
accordingly remove the first 4 convolution layers along with
their activation and normalization layers.

*Work done while the author was an intern at Google.
*Work done while the author was an intern at Google.

On the right, Figure 13 (b) is the pre-decoder network.
With latent grids {Zn} as input, it includes global connection
and trilinear interpolation. The global connection consists
of 3D transposed convolution layers to propagate global
context from level 0 to other levels. Trilinear interpolation
is utilized to obtain the latent codes at each query point,
which are then fed into the decoders at each level. For
level 0, the 3D position of query point is also fed into the
decoder. For the decoder modules, we use the same IM-
Net [3] architecture for each level, with the only difference
in the input dimension.

(b) Pre-decoder network with global connection and
trilinear interpolation

3x
3x

3
/ 1

1283

x161283

x1

3x
3x

3
/ 2

643

x32

3x
3x

3
/ 1

643

x32

3x
3x

3
/ 2

323

x64

3x
3x

3
/ 1

323

x64

3x
3x

3
/ 2

163

x128

3x
3x

3
/ 1

163

x128

Input
Grid Global

Feature F

3x
3x

3
/ 2

83

x128

1x
1x

1
/ 1

3x
3x

3
/ 1

83

x128

3x
3x

3
/ 2

43

x256

3x
3x

3
/ 1

43

x256

3x
3x

3
/ 2

23

x512

3x
3x

3
/ 1

23

x512

3x
3x

3
/ 2

13

x512

1x
1x

1
/ 1

13

x512

3x
3x

3
/ 2

83

x128

3x
3x

3
/ 1

83

X128

3x
3x

3
/ 2

43

x256

3x
3x

3
/ 1

43

x256

3x
3x

3
/ 2

23

x512

3x
3x

3
/ 1

23

x512

1x
1x

1
/ 1

23

x64

3x
3x

3
/ 2

83

x128

3x
3x

3
/ 1

83

x128

3x
3x

3
/ 2

43

x256

3x
3x

3
/ 1

43

x256

1x
1x

1
/ 1

43

x32

3x
3x

3
/ 2

83

x128

3x
3x

3
/ 1

83

x128

1x
1x

1
/ 1

83

x16

163

x8

Latent Grid
Z0

Latent Grid
Z1

Latent Grid
Z2

Latent Grid
Z3

Latent Grid
Z4

Z0

4x4x4 / 223x256

x3

256

Z1

13x512

23x64 320

D1

515

D0

64

4x4x4 / 243x128
128

Z2

43x32 160

D232

4x4x4 / 283x64
64

Z3

83x16 80

D316

4x4x4 / 2163x32
32

Z4

163x8 40

D48

(a) Encoder network

kernel size / stride 3D Conv + Relu

kernel size / stride 3D Transposed Conv + Relu

Trilinear interpolation at query point x

kernel size / stride 3D Conv + Relu + BN

kernel size / stride 3D Transposed Conv + BN + Relu

�Z1

�Z2

�Z3

�Z4

Figure 13: Detailed architecture of our network.

9

Hyperparameters. We implement our method in Tensor-
Flow. During training, we set batch size as 8 and train
our network end-to-end. We use Adam as optimizer, with
β1 = 0.9, β2 = 0.999 and a learning rate of 1e−4. The
latent grid dropout rate is set as 0.5 for the models that need
to carry out decoder-only latent optimization while it is set
as 0 for the models that only run encoder-decoder inference
(e.g., the models for point cloud completion and voxel super-
resolution).

During decoder-only latent optimization, we optimize
over Zn, n = 0, 1, ..., 4 and keep other parameters fixed. We
use Adam with the same configuration of β1, β2 as training,
but at a higher learning rate of 1e−2 to accelerate conver-
gence. In all our experiments, we only run latent optimiza-
tion for 1000 steps. For each step during auto-encoding, we
randomly draw 2048 points. For each step during shape com-
pletion, we randomly draw 2048 camera-observable points,
along with 1024 occluded points for the global consistency
loss.

Experiment details. For the training data, we use the wa-
tertight ShapeNet meshes from OccNet [23] and normalize
into bounding box with side length 1.28. We also truncate
SDF values at 0.05.

For the auto-encoding experiment (Section 4.3), as men-
tioned in the paper, IF-Net [4] originally uses high-resolution
latent grids which contain more parameters than the input
grid. We therefore constrain IF-Net to only use latent grids
with dimensions: [83×22, 163×8]. The resulting total num-
ber of parameters in the latent grids is the same as MDIF .

For the point cloud completion (Section 4.4) and voxel
super-resolution (Section 4.5) experiments, unlike auto-
encoding, the goal is to infer missing data rather than learn a
compact latent space. Therefore, in these experiments, we
use the original implementation of IF-Net which exploits
high-resolution latent grids. Similarly, for MDIF in these
experiments, we additionally interpolate features at query
points from high-resolution feature grids and feed into the
decoders.

6.2. Encoder-Decoder vs. Decoder-Only Inference

In Figure 14, we show qualitative auto-encoding results
of MDIF using encoder-decoder inference and decoder-only
latent optimization. Compared with encoder-decoder in-
ference, decoder-only latent optimization already produces
more accurate reconstruction with only 200 optimization
steps. More steps further lower the error.

6.3. Illustration of Ablation Baselines

In Figure 15, we illustrate the baselines that we ablate in
Table 1 and Table 2.

GT Encoder-
decoder

Decoder-only
50 steps 200 steps 1000 steps

Figure 14: Encoder-decoder vs. decoder-only inference.
Auto-encoding results of MDIF under encoder-decoder in-
ference and decoder-only latent optimization. Top 3 rows:
objects in 3D-R2N2 test split. Bottom 3 rows: objects in
unseen categories.

E
D

Full pipeline

D
E

D

D

No residual

No dropout

E
D

D
D

E
D

No global connection

Global baseline

E D E D

Local baseline

Figure 15: Illustration of ablation study baselines. E: en-
coder; D: decoder.

6.4. Comparison of Dropout and Consistency Loss

To further analyze the different contribution of latent grid
dropout and global consistency loss on shape completion,

Method
Shape Completion

Chamfer (↓) F-Score (↑)

Full pipeline 1.34 66.5
No consistency loss 1.43 64.7
No dropout (leave-one-out) 1.43 63.9

Table 6: Quantitatively ablate the impacts of consistency
loss and latent grid dropout on shape completion from depth
image.

GT Full
pipeline
(level 0)

No
consistency

loss

No
dropout

(leave-one-out)

Full
pipeline

Figure 16: Ablation on latent grid dropout and consis-
tency loss for the task of shape completion. Green dots
are observed depth points. Compared to the global con-
sistency loss which regularizes regions far from observed
points, latent grid dropout reduces noisy residuals and en-
ables plausible detail synthesis on regions that are close to
the observed part.

we carry out a leave-one-out ablation on dropout where the
only difference with full pipeline is the removal of latent
grid dropout. Same as the baselines in Table 2, this ablation
is conducted on the chair category of ShapeNet. In Table 6,
we show that the removal of dropout leads to slightly larger
decrease in quantitative performance than the removal of
consistency loss. Meanwhile, dropout impacts qualitative
results in a different way than the consistency loss. As
shown in Figure 16, when dropout is applied (the third and
fourth columns from the left), the model is able to synthesize
plausible details on the unobserved regions that are close to
the observed part (see insets at the bottom). On the contrary,
without dropout (the rightmost column), the model tends to
produce noisy residuals (red inset) or add no detail due to
the consistency loss (blue inset).

6.5. Failure Cases

Figure 17 shows our failure cases under decoder-only
latent optimization for auto-encoding and shape completion
from depth image. For objects with very complex geometry
or thin structures, our approach still faces challenges. For
auto-encoding, such problems could be alleviated by using

GT

Sh
ap

e
C

om
pl

et
io

n
Au

to
-

En
co

di
ng

Ours GT Ours

Figure 17: Failure cases. Row 1 and 2: auto-encoding; Row
3 and 4: shape completion from depth image.

Ours Ours-6 Ours-7 Ours-8 Ours Ours-6 Ours-7 Ours-8

Chamfer 0.19 0.13 0.13 0.12 0.17 0.14 0.13 0.13
F-Score 93.0 96.5 96.7 97.5 92.8 96.3 97.1 97.3

Table 7: Auto-encoding accuracy with more levels. Mid-
dle columns: 3D-R2N2 test set. Right columns: unseen
categories. “Ours” stands for 5 levels and “Ours-N” stands
for N levels.

more levels and higher resolution latent grids. For shape
completion, when an unobserved part (e.g., the lamp body
in row 3, column 3) is completely missing in the coarse
prediction from level 0, our approach is unable to synthesize
such delicate structures.

6.6. Additional Ablation for Number of Levels

In the paper, we use 5 levels as it is a good balance be-
tween accuracy and efficiency. But as previously indicated,
MDIF is flexible to use other number of levels. In Figure 9,
we showed progressive refinement rate-distortion for levels
1-5. Here in Table 7, we further show the auto-encoding ac-
curacy under encoder-decoder inference with up to 8 levels.

6.7. Interpolation and Retrieval in Latent Space

Figure 18 shows linear interpolation in latent space. The
latent codes for the two ends are obtained with encoder-
decoder auto-encoding. Figure 19 shows results for object
retrieval based on latent codes (top-2 retrievals for each query
object).

Figure 18: Linear interpolation in latent space.

Query Retrieval Query Retrieval

Figure 19: Object retrieval. Queries are from test set (left)
and unseen categories (right). Retrieved objects are from
training set.

test_02691156\d48064100e793155f56a7ca118a

test_02958343\e7c4b54fe56d9288dd1e15301c8

Input IF-Net Ours GT

test_03001627\ccc4b5366a6dc7c4cffab2c8f8bf5

test_03636649\d7fb922f162360b5c66a63406f81

test_04090263\e1e43d3916a7e19acb7b0ec95e

test_04379243\fcad199862c19cd97fb247f6727f

Figure 20: Point cloud completion. Additional qualitative
results.

6.8. Additional Qualitative Results

Figure 20 and Figure 21 show additional qualitative
comparisons on point cloud completion and voxel super-
resolution. Compared to IF-Net, our method generally pro-
duces cleaner reconstructions with less artifacts.

test_02691156\fb68077d405c233ef879f4163a3e

test_02828884\e28f8467945b5d526070f6b7b254

Input IF-Net Ours GT

test_02958343\d652c35de82c3f3141fd6622cb2

test_03636649\d7fb922f162360b5c66a63406f81

test_03211117\e477ab5ea25f171172249e3f2c8

test_03636649\f1cc6b6fa75bd67ff51f77a6d7299

Figure 21: Voxel super-resolution. Additional qualitative
results.

6.9. Detailed Quantitative Results

Table 8 and Table 9 show per-category quantitative results
(Chamfer L2 distance and F-Score) on auto-encoding. For
encoder-decoder inference, we compare MDIF with OccNet
(“Occ.”) [23], SIF [14], LDIF [13] and IF-Net (“IF.”) [4]. For
decoder-only latent optimization, we compare MDIF with
OccNet (“Occ.”) [23], IM-Net (“IM.”) [3] and a local base-
line (resembles [19, 1]). Table 10 shows per-category quanti-
tative results (Chamfer L2 distance / F-Score) on point cloud
completion and voxel super-resolution, where we compare
MDIF with IF-Net [4] under encoder-decoder inference.

In these experiments, MDIF has lower Chamfer errors for
most categories and higher overall F-Score.

6.10. Shape Completion User Study

First, in Table 11, we compare quantitative results of
MDIF and competing methods on shape completion from
depth image. In this comparison, we also include a
MDIF model (“Ours”) that uses encoder-decoder inference.
This model has the same architecture as the MDIF model
in the point cloud completion experiment, and is retrained
from scratch to take voxelized depth points (depth points
voxelized into a 1283 grid) as input. In terms of metrics,
we additionally use Asymmetric Chamfer to measure the
reconstruction accuracy in observed regions. It is computed
as one-directional Chamfer L2 distance from depth points to
reconstruction.

Category Chamfer (↓) F-Score (↑, %)
Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours* Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

airplane 0.16 0.44 0.10 0.52 0.05 0.25 0.13 0.044 0.028 87.8 71.4 96.9 94.4 97.2 89.8 91.7 98.5 98.6
bench 0.24 0.82 0.17 0.31 0.08 0.34 0.22 0.121 0.052 87.5 58.4 94.8 92.6 92.4 85.2 88.6 96.0 96.0
cabinet 0.41 1.10 0.33 0.11 0.29 0.32 0.23 0.063 0.051 86.0 59.3 92.0 93.0 91.5 83.2 89.2 96.6 96.6
car 0.61 1.08 0.28 0.30 0.29 0.58 0.26 0.090 0.088 77.5 56.6 87.2 87.4 86.6 69.3 82.7 93.1 93.0
chair 0.44 1.54 0.34 0.10 0.10 0.38 0.43 0.042 0.035 77.2 42.4 90.9 94.5 93.8 80.2 82.5 97.7 97.6
display 0.34 0.97 0.28 0.07 0.08 0.35 0.20 0.043 0.019 82.1 56.3 94.8 96.1 95.1 82.3 89.4 98.6 98.7
lamp 1.67 3.42 1.80 1.17 0.90 1.47 2.76 0.795 0.795 62.7 35.0 84.0 89.1 87.1 62.9 73.8 93.5 93.5
rifle 0.19 0.42 0.09 1.07 0.05 0.39 0.55 0.060 0.057 86.2 70.0 97.3 93.5 96.2 86.1 81.1 96.9 96.9
sofa 0.30 0.80 0.35 0.13 0.11 0.31 0.16 0.208 0.037 85.9 55.2 92.8 92.5 93.5 85.2 89.3 98.3 98.4
speaker 1.01 1.99 0.68 0.14 0.27 0.38 0.17 0.065 0.044 74.7 47.4 84.3 90.2 90.1 78.1 89.4 97.3 97.3
table 0.44 1.57 0.56 0.17 0.13 0.31 0.30 0.107 0.046 84.9 55.7 92.4 93.4 93.7 87.2 88.6 96.5 97.6
telephone 0.13 0.39 0.08 0.08 0.06 0.19 0.11 0.043 0.010 94.8 81.8 98.1 98.8 98.3 88.9 96.5 99.6 99.6
watercraft 0.41 0.78 0.20 0.90 0.10 0.35 0.39 0.075 0.067 77.3 54.2 93.2 92.7 93.7 80.3 84.7 97.4 97.2

mean 0.49 1.18 0.40 0.39 0.19 0.43 0.46 0.135 0.102 81.9 59.0 92.2 92.9 93.0 81.4 86.7 96.9 97.0

Table 8: Per-category auto-encoding accuracy for objects in 3D-R2N2 test set of ShapeNet. For each metric, left columns
compare methods under encoder-decoder inference while right columns compare under decoder-only latent optimization. ∗:
decoder-only latent optimization.

Category Chamfer (↓) F-Score (↑, %)
Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours* Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

bed 1.30 2.24 0.68 0.10 0.16 0.87 0.43 0.052 0.045 59.3 32.0 81.4 94.7 90.9 67.1 77.8 96.8 97.0
birdhouse 1.25 1.92 0.75 0.31 0.11 0.72 0.49 0.036 0.036 54.2 33.8 76.2 90.4 92.1 61.3 74.3 97.6 97.7
bookshelf 0.83 1.21 0.36 0.30 0.20 0.99 0.60 0.103 0.091 66.5 43.5 86.1 93.5 88.3 59.0 73.0 95.1 94.2
camera 1.17 1.91 0.83 0.27 0.16 0.45 0.58 0.047 0.050 57.3 37.4 77.7 95.0 94.0 70.2 75.9 98.6 98.6
file 0.41 0.71 0.29 0.35 0.30 0.38 0.25 0.054 0.041 86.0 65.8 93.0 95.7 94.4 84.3 90.0 97.6 97.7
mailbox 0.60 1.46 0.40 1.18 0.20 0.51 0.74 0.102 0.102 67.8 38.1 87.6 81.4 93.5 80.0 85.2 98.5 98.5
piano 1.07 1.81 0.78 0.34 0.08 0.91 0.71 0.034 0.030 61.4 39.8 82.2 96.7 94.8 62.2 77.3 98.3 98.3
printer 0.85 1.44 0.43 0.15 0.15 0.48 0.31 0.035 0.035 66.2 40.1 84.6 94.9 94.3 74.9 82.3 98.2 98.3
stove 0.49 1.04 0.30 0.55 0.22 0.37 0.25 0.107 0.040 77.3 52.9 89.2 91.3 93.5 78.6 87.4 97.7 97.7
tower 0.50 1.05 0.47 0.44 0.14 0.53 0.30 0.060 0.070 70.2 45.9 85.7 90.3 91.8 73.9 81.7 96.9 96.6

mean 0.85 1.48 0.53 0.40 0.17 0.62 0.47 0.063 0.054 66.6 43.0 84.4 92.4 92.8 71.1 80.5 97.5 97.5

Table 9: Per-category auto-encoding accuracy for objects in unseen categories of ShapeNet. For each metric, left columns
compare methods under encoder-decoder inference while right columns compare under decoder-only latent optimization. ∗:
decoder-only latent optimization.

Category Point Cloud Completion Voxel Super-Resolution
IF-Net Ours IF-Net Ours

airplane 2.37 / 89.7 0.08 / 93.3 1.51 / 78.3 1.02 / 80.7
bench 1.22 / 84.5 0.18 / 86.0 1.88 / 59.1 1.09 / 59.5
cabinet 1.65 / 87.1 0.84 / 83.8 0.65 / 60.6 0.60 / 60.8
car 1.96 / 79.4 0.19 / 80.9 0.40 / 75.8 0.30 / 75.8
chair 2.02 / 81.3 0.33 / 80.5 1.02 / 62.6 0.82 / 63.4
display 1.09 / 88.5 0.30 / 88.6 1.04 / 62.0 0.74 / 62.1
lamp 2.03 / 76.3 1.76 / 78.0 8.14 / 58.3 3.97 / 60.9
rifle 2.19 / 85.3 0.05 / 95.9 2.09 / 78.0 0.34 / 81.3
sofa 0.71 / 88.2 0.18 / 86.8 0.68 / 56.2 0.48 / 57.5
speaker 1.52 / 78.4 0.65 / 75.9 0.73 / 56.1 0.65 / 58.0
table 1.70 / 84.7 0.25 / 85.1 2.72 / 53.5 1.87 / 55.7
telephone 0.98 / 95.7 0.06 / 96.5 0.77 / 77.9 0.67 / 78.2
watercraft 1.51 / 87.2 0.14 / 88.4 2.05 / 71.7 0.69 / 73.6

mean 1.61 / 85.0 0.39 / 86.1 1.82 / 65.4 1.02 / 66.7

Table 10: Per-category quantitative results (Chamfer L2
distance / F-Score) for point cloud completion and voxel
super-resolution.

When comparing under encoder-decoder inference (“Oc-
cNet”, “LDIF”, “Ours”), MDIF is only slightly worse than
LDIF in F-Score while performs the best in the other two
metrics. This reveals that when using encoder-decoder infer-
ence, MDIF can produce completion results similarly close
to the groundtruth as LDIF. Meanwhile, the large margin
in Asymmetric Chamfer compared with OccNet and LDIF
demonstrates the better capability of MDIF to preserve de-
tails in observed regions, even under encoder-decoder in-
ference. For the MDIF model that uses decoder-only latent
optimization (“Ours*”), although it has worse performance
in Chamfer distance and F-Score, it can reduce the error
in Asymmetric Chamfer even much further. This indicates
that it performs much better on the observable parts and the
source of error mostly comes from the unobserved parts. As
illustrated in the paper (Figure 12), although different from

Category Chamfer (↓) F-Score (↑, %) Asym. Chamfer (↓)
OccNet LDIF Ours Ours* OccNet LDIF Ours Ours* OccNet LDIF Ours Ours*

airplane 0.47 0.17 0.26 0.46 70.1 89.2 90.1 73.2 0.246 0.054 0.022 0.007
bench 0.70 0.39 0.45 0.96 64.9 81.9 82.5 56.9 0.281 0.108 0.049 0.012
cabinet 1.13 0.77 0.73 1.35 70.1 77.9 73.8 60.4 0.109 0.052 0.070 0.009
car 0.99 0.51 0.41 1.04 61.6 72.4 74.3 64.2 0.138 0.054 0.043 0.011
chair 2.34 1.02 0.91 1.42 50.2 69.6 72.5 67.0 0.785 0.270 0.053 0.012
display 0.95 0.62 0.56 1.69 62.8 80.0 76.7 55.4 0.312 0.217 0.056 0.007
lamp 9.91 2.15 1.26 3.26 44.1 66.4 70.5 54.6 10.80 1.429 0.160 0.110
rifle 0.49 0.14 0.31 0.62 66.4 92.3 91.5 75.9 0.246 0.048 0.022 0.005
sofa 1.08 0.83 0.70 1.19 61.2 71.7 71.4 62.1 0.155 0.074 0.059 0.007
speaker 3.50 1.48 1.45 3.73 52.4 67.3 64.6 49.8 0.280 0.115 0.077 0.020
table 2.49 1.14 0.94 1.11 66.7 78.0 77.8 61.5 0.784 0.339 0.065 0.015
telephone 0.35 0.19 0.21 1.05 86.1 92.0 89.4 55.9 0.089 0.046 0.046 0.002
watercraft 1.15 0.50 0.45 0.69 54.5 77.5 78.3 67.2 0.684 0.148 0.033 0.020

mean 1.97 0.76 0.67 1.43 62.4 78.2 78.0 61.9 1.147 0.227 0.058 0.018

Table 11: Shape completion from depth image. Quantitative comparisons on Chamfer distance, F-Score and Asymmetric
Chamfer distance. “Ours*” achieves the lowest error on the observed part, measured by the Asymmetric Chamfer distance.
Its worse Chamfer and F-Score results are caused by the unobserved part. See our user study for more in-depth analysis. ∗:
decoder-only latent optimization.

the groundtruth, the unobserved parts of its results still look
plausible.

To prove our point, we conducted a user study to compare
human subjective verdicts and F-Score. We recruited 88
participants who were at least 18 years old. All participants
had no prior knowledge of this project. Each participant was
given 32 pairs of examples, one from MDIF (with decoder-
only latent optimization) and one from LDIF [13]. Order
of the examples is fully counterbalanced and randomized.
Each example was shown in two different views: one ob-
served (input view) and one unobserved. Participants were
then asked to choose which example was the more plausible
reconstruction given the input. If both examples looked sim-
ilarly plausible, they were allowed to choose cannot decide.

Examples were chosen in this way. The worst results in
F-Score were filtered, since both human and F-Score tend to
agree on those cases. Then examples with unmatched input
views were removed. We then randomly picked 32 examples
from the rest.

The results of user study are summarized in Figure 22.
In contrast to F-Score, 54.2% of the participants chose in
favor of MDIF results, whilst 31.9% thought LDIF results
were better. In addition, 13.9% could not decide between
MDIF and LDIF. Moreover, when compared with the quan-
titative metrics, 68.1% disagree with Chamfer L2 distance,
and 51.4% disagree with F-Score. All the 32 examples and
itemized results are shown in Figure 23, Figure 24, Figure 25
and Figure 26.

The conclusion of this user study aligns with previous
work [33], where Chamfer distance has been argued as not
suitable for evaluating completion tasks due to its sensitivity

to outliers. Moreover, this study also shows that, although
more robust, F-Score only tells us how different the recon-
struction of the unobserved part is from the groundtruth, but
not how plausible it is, which is what humans ultimately
care about.

(a) Vote statistics

(b) Compare with Chamfer (c) Compare with F-Score

Figure 22: Summary of user study. Participants were asked
which reconstruction was more plausible. 54.2% chose
MDIF while 13.9% cannot decide between the results. More-
over, 68.1% of the votes disagree with Chamfer L2 distance,
and 51.4% disagree with F-Score. Refer to Figure 23 to
Figure 26 for itemized results.

 GT LDIF MDIF

11. 88, 0, 0
chamfer 0.3035 0.1406 0.1629
fscore 80.28 84.62 -4.34
asymmetric chamfer 0.0276 0.0335 0.8247

4. 85, 1, 2
chamfer 0.3488 0.1390 0.2098
fscore 64.90 85.48 -20.58
asymmetric chamfer 0.0050 0.1491 0.0333

5. 83, 0, 5
chamfer 0.2556 0.2009 0.0547
fscore 74.63 85.51 -10.88
asymmetric chamfer 0.0034 0.0274 0.1239

28. 83, 1, 4
chamfer 0.2311 0.1362 0.0948
fscore 73.98 85.05 -11.06
asymmetric chamfer 0.0065 0.0791 0.0818

2. 80, 5, 3
chamfer 0.0886 0.0325 0.0561
fscore 84.55 98.21 -13.66
asymmetric chamfer 0.0012 0.0111 0.1121

14. 76, 1, 11
chamfer 0.1286 0.1104 0.0182
fscore 83.41 84.10 -0.69
asymmetric chamfer 0.0036 0.0454 0.0801

9. 78, 5, 5
chamfer 0.2618 0.0964 0.1654
fscore 82.14 93.68 -11.54
asymmetric chamfer 0.0016 0.0159 0.0984

20. 73, 0, 15
chamfer 1.7886 0.5556 1.2330
fscore 59.34 69.03 -9.70
asymmetric chamfer 0.0061 0.5031 0.0122

F:
C:

80.3%
0.304

0.0% 100%

84.6%
0.141

F:
C:

83.4%
0.129

1.1% 86.4%

84.1%
0.110

F:
C:

64.9%
0.349

1.1% 96.6%

85.5%
0.139

F:
C:

74.6%
0.256

0.0% 94.3%

85.5%
0.201

F:
C:

74.0%
0.231

1.1% 94.3%

85.1%
0.136

F:
C:

84.6%
0.089

5.7% 90.9%

98.2%
0.033

F:
C:

82.1%
0.262

5.7% 88.6%

93.7%
0.096

83.4%
0.129

86.4%

F:
C:

59.3%
1.789

0.0% 83.0%

69.0%
0.556

Figure 23: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.

 GT LDIF MDIF

12. 78, 7, 3
chamfer 0.2588 0.0996 0.1592
fscore 75.25 87.38 -12.13
asymmetric chamfer 0.0028 0.0376 0.0742

26. 75, 10, 3
chamfer 0.9906 0.4540 0.5366
fscore 71.25 73.87 -2.62
asymmetric chamfer 0.0038 0.0454 0.0829

1. 74, 10, 4
chamfer 0.1045 0.0448 0.0597
fscore 82.61 96.21 -13.60
asymmetric chamfer 0.0014 0.0094 0.1527

18. 61, 0, 27
chamfer 3.2172 1.7186 1.4986
fscore 55.71 55.34 0.37
asymmetric chamfer 0.0105 0.8667 0.0121

19. 61, 3, 24
chamfer 0.5586 0.4976 0.0611
fscore 60.01 55.22 4.79
asymmetric chamfer 0.0106 0.0849 0.1251

10. 70, 14, 4
chamfer 0.3021 0.1385 0.1636
fscore 79.36 93.68 -14.32
asymmetric chamfer 0.0005 0.0111 0.0435

25. 65, 10, 13
chamfer 1.0817 0.6070 0.4746
fscore 64.62 70.86 -6.24
asymmetric chamfer 0.0241 0.0244 0.9868

3. 55, 19, 14
chamfer 0.1013 0.0827 0.0186
fscore 85.44 90.66 -5.22
asymmetric chamfer 0.0027 0.0187 0.1429

80.3%
0.304

100%

83.4%
0.129

86.4%

85.2%

F:
C:

71.3%
0.991

11.4%

73.9%
0.454

F:
C:

85.4%
0.101

21.6% 62.5%

90.7%
0.083

F:
C:

82.6%
0.105

11.4% 84.1%

96.2%
0.045

F:
C:

79.4%
0.302

15.9% 79.5%

93.7%
0.139

F:
C:

64.6%
1.082

11.4% 73.9%

70.9%
0.607

F:
C:

55.7%
3.217

0.0% 69.3%

55.3%
1.719

F:
C:

60.0%
0.559

3.4% 69.3%

55.2%
0.498

F:
C:

75.3%
0.259

8.0% 88.6%

87.4%
0.100

Figure 24: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.

 GT LDIF MDIF

23. 54, 23, 11
chamfer 0.1889 0.0839 0.1051
fscore 85.45 88.26 -2.81
asymmetric chamfer 0.0028 0.0234 0.1213

15. 49, 23, 16
chamfer 1.5430 0.1016 1.4414
fscore 56.76 93.01 -36.25
asymmetric chamfer 0.0026 0.0309 0.0848

31. 45, 22, 21
chamfer 0.1882 0.0580 0.1302
fscore 81.64 93.06 -11.42
asymmetric chamfer 0.0009 0.0170 0.0514

32. 38, 19, 31
chamfer 0.2138 0.1013 0.1124
fscore 78.85 91.66 -12.81
asymmetric chamfer 0.0097 0.0373 0.2612

7. 31, 22, 35
chamfer 2.1987 1.6165 0.5822
fscore 56.24 51.15 5.09
asymmetric chamfer 0.0006 0.0132 0.0455

27. 34, 34, 20
chamfer 0.2675 0.1115 0.1560
fscore 73.87 89.79 -15.92
asymmetric chamfer 0.0016 0.0160 0.0996

13. 31, 53, 4
chamfer 0.3412 0.0625 0.2787
fscore 83.48 91.77 -8.29
asymmetric chamfer 0.0017 0.0212 0.0786

21. 17, 46, 25
chamfer 9.4814 0.2091 9.2723
fscore 55.20 92.75 -37.55
asymmetric chamfer 0.0029 0.2968 0.0098

80.3%
0.304

100%

83.4%
0.129

86.4%

F:
C:

88.5%
0.189

26.1% 61.4%

88.3%
0.084

F:
C:

55.2%
9.481

52.3% 19.3%

92.8%
0.209

F:
C:

56.8%
1.543

26.1% 55.7%

93.0%
0.102

F:
C:

81.6%
0.188

25.0% 51.1%

93.1%
0.058

F:
C:

78.9%
0.214

21.6% 43.2%

91.7%
0.101

F:
C:

56.2%
2.199

25.0% 35.2%

51.2%
1.617

F:
C:

73.9%
0.268

38.6% 38.6%

89.8%
0.112

F:
C:

83.5%
0.341

60.2% 35.2%

91.8%
0.063

Figure 25: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.

 GT LDIF MDIF

22. 16, 55, 17
chamfer 1.0011 0.0997 0.9014
fscore 58.70 87.36 -28.66
asymmetric chamfer 0.0031 0.0223 0.1371

29. 12, 54, 22
chamfer 0.2623 0.1110 0.1513
fscore 81.10 83.79 -2.69
asymmetric chamfer 0.0015 0.0182 0.0799

16. 6, 59, 23
chamfer 2.1095 0.1223 1.9872
fscore 53.31 75.54 -22.23
asymmetric chamfer 0.0010 0.0170 0.0569

8. 3, 71, 14
chamfer 1.9441 0.1694 1.7747
fscore 71.35 75.01 -3.65
asymmetric chamfer 0.0004 0.0100 0.0429

30. 5, 76, 7
chamfer 0.2213 0.1068 0.1145
fscore 77.68 92.97 -15.29
asymmetric chamfer 0.0007 0.0194 0.0343

24. 1, 84, 3
chamfer 0.1992 0.0280 0.1712
fscore 87.87 99.41 -11.54
asymmetric chamfer 0.0046 0.0110 0.4186

6. 0, 86, 2
chamfer 0.4552 0.0678 0.3875
fscore 67.56 93.59 -26.03
asymmetric chamfer 0.0112 0.0281 0.3974

17. 0, 86, 2
chamfer 0.3842 0.0615 0.3227
fscore 70.42 94.88 -24.45
asymmetric chamfer 0.0024 0.0149 0.1640

80.3%
0.304

100%

83.4%
0.129

86.4%

F:
C:

58.7%
1.00

62.5% 18.2%

87.4%
0.100

F:
C:

70.4%
0.384

97.7% 0.0%

94.9%
0.062

F:
C:

81.1%
0.262

61.4% 13.6%

83.8%
0.111

F:
C:

53.3%
2.110

67.0% 6.8%

75.5%
0.122

F:
C:

77.7%
0.221

86.4% 5.7%

93.0%
0.107

F:
C:

87.9%
0.199

95.5% 1.1%

99.4%
0.028

F:
C:

67.6%
0.455

97.7% 0.0%

93.6%
0.068

F:
C:

71.4%
1.94

80.7% 3.4%

75.0%
0.169

Figure 26: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.

References
[1] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In Eur. Conf. Comput. Vis., pages 608–625.
Springer, 2020.

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015.

[3] Zhiqin Chen and Hao Zhang. Learning implicit fields for gen-
erative shape modeling. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 5939–5948, 2019.

[4] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruction
and completion. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 6970–6981, 2020.

[5] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In Eur. Conf.
Comput. Vis., pages 628–644. Springer, 2016.

[6] Charles K Chui. An introduction to wavelets. Elsevier, 2016.
[7] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In SIGGRAPH,
1996.

[8] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and shape
synthesis. In IEEE Conf. Comput. Vis. Pattern Recog., pages
5868–5877, 2017.

[9] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh
Khamis, Adarsh Kowdle, Christoph Rhemann, Vladimir
Tankovich, , and Shahram Izadi. Motion2fusion: Real-time
volumetric performance capture. ACM TOG (SIGGRAPH
Asia), 2017.

[10] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip
Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts
Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,
Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. Fu-
sion4d: real-time performance capture of challenging scenes.
ACM Trans. Graph., 35(4):114, 2016.

[11] Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe,
and Amitabh Varshney. Montage4D: Real-Time Seamless
Fusion and Stylization of Multiview Video Textures. Journal
of Computer Graphics Techniques, 8(1):1–34, Jan. 2019.

[12] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia,
and Leonidas J Guibas. Curriculum deepsdf. In Eur. Conf.
Comput. Vis., pages 51–67. Springer, 2020.

[13] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and
Thomas Funkhouser. Local deep implicit functions for 3d
shape. In IEEE Conf. Comput. Vis. Pattern Recog., June 2020.

[14] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning shape
templates with structured implicit functions. In Int. Conf.
Comput. Vis., pages 7154–7164, 2019.

[15] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In Eur. Conf. Comput. Vis., pages
484–499. Springer, 2016.

[16] Christian Häne, Sohubham Tulsiani, and Jitendra Malik. Hier-
archical surface prediction. IEEE Trans. Pattern Anal. Mach.
Intell., 42(6):1348–1361, 2019.

[17] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Trans. Graph., 38(4):1–12, 2019.

[18] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. KinectFusion: Real-time 3D reconstruction
and interaction using a moving depth camera. In Proc. UIST,
2011.

[19] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,
Matthias Nießner, and Thomas Funkhouser. Local implicit
grid representations for 3d scenes. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 6001–6010, 2020.

[20] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.
Sdfdiff: Differentiable rendering of signed distance fields for
3d shape optimization. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1251–1261, 2020.

[21] Marian Kleineberg, Matthias Fey, and Frank Weichert. Adver-
sarial generation of continuous implicit shape representations.
arXiv preprint arXiv:2002.00349, 2020.

[22] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. arXiv preprint
arXiv:2007.11571, 2020.

[23] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4460–4470, 2019.

[24] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Deep level
sets: Implicit surface representations for 3d shape inference.
arXiv preprint arXiv:1901.06802, 2019.

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In Eur. Conf. Comput. Vis., 2020.

[26] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dy-
namicfusion: Reconstruction and tracking of non-rigid scenes
in real-time. In IEEE Conf. Comput. Vis. Pattern Recog.,
2015.

[27] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 165–174, 2019.

[28] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and An-
dreas Geiger. Octnetfusion: Learning depth fusion from data.
In International Conference on 3D Vision (3DV), pages 57–66.
IEEE, 2017.

[29] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33, 2020.

[30] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 2020.

[31] Danhang Tang, Saurabh Singh, Philip A Chou, Christian
Hane, Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip
Davidson, Onur G Guleryuz, Yinda Zhang, Shahram Izadi,
Andrea Tagliasacchi, Sofien Bouaziz, and Cem Keskin. Deep
implicit volume compression. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1293–1303, 2020.

[32] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional architec-
tures for high-resolution 3d outputs. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 2088–2096, 2017.

[33] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen
Li, Vladlen Koltun, and Thomas Brox. What do single-view
3d reconstruction networks learn? In IEEE Conf. Comput.
Vis. Pattern Recog., pages 3405–3414, 2019.

[34] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitz-
mann, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan
Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman,
Dan B Goldman, and Michael Zollhoefer. State of the art on
neural rendering. In Eurographics, 2020.

[35] Hao Wang, Nadav Schor, Ruizhen Hu, Haibin Huang, Daniel
Cohen-Or, and Hui Huang. Global-to-local generative model
for 3d shapes. ACM Trans. Graph., 37(6):1–10, 2018.

[36] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-cnn: Octree-based convolutional neural net-
works for 3d shape analysis. ACM Trans. Graph., 36(4):72:1–
72:11, July 2017.

[37] Peng-Shuai Wang, Yang Liu, and Xin Tong. Deep octree-
based cnns with output-guided skip connections for 3d shape
and scene completion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 266–267, 2020.

[38] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:
A deep representation for volumetric shapes. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1912–1920, 2015.

[39] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech,
and Ulrich Neumann. Disn: Deep implicit surface network
for high-quality single-view 3d reconstruction. In Advances
in Neural Information Processing Systems, pages 492–502,
2019.

